The Monty Hall Problem: The Remarkable Story of Math's Most Contentious Brain Teaser
Jason Rosenhouse - 2009
Imagine that you face three doors, behind one of which is a prize. You choose one but do not open it. The host--call him Monty Hall--opens a different door, alwayschoosing one he knows to be empty. Left with two doors, will you do better by sticking with your first choice, or by switching to the other remaining door? In this light-hearted yet ultimately serious book, Jason Rosenhouse explores the history of this fascinating puzzle. Using a minimum ofmathematics (and none at all for much of the book), he shows how the problem has fascinated philosophers, psychologists, and many others, and examines the many variations that have appeared over the years. As Rosenhouse demonstrates, the Monty Hall Problem illuminates fundamental mathematical issuesand has abiding philosophical implications. Perhaps most important, he writes, the problem opens a window on our cognitive difficulties in reasoning about uncertainty.
Learning From Data: A Short Course
Yaser S. Abu-Mostafa - 2012
Its techniques are widely applied in engineering, science, finance, and commerce. This book is designed for a short course on machine learning. It is a short course, not a hurried course. From over a decade of teaching this material, we have distilled what we believe to be the core topics that every student of the subject should know. We chose the title `learning from data' that faithfully describes what the subject is about, and made it a point to cover the topics in a story-like fashion. Our hope is that the reader can learn all the fundamentals of the subject by reading the book cover to cover. ---- Learning from data has distinct theoretical and practical tracks. In this book, we balance the theoretical and the practical, the mathematical and the heuristic. Our criterion for inclusion is relevance. Theory that establishes the conceptual framework for learning is included, and so are heuristics that impact the performance of real learning systems. ---- Learning from data is a very dynamic field. Some of the hot techniques and theories at times become just fads, and others gain traction and become part of the field. What we have emphasized in this book are the necessary fundamentals that give any student of learning from data a solid foundation, and enable him or her to venture out and explore further techniques and theories, or perhaps to contribute their own. ---- The authors are professors at California Institute of Technology (Caltech), Rensselaer Polytechnic Institute (RPI), and National Taiwan University (NTU), where this book is the main text for their popular courses on machine learning. The authors also consult extensively with financial and commercial companies on machine learning applications, and have led winning teams in machine learning competitions.
Networks: An Introduction
M.E.J. Newman - 2010
The rise of the Internet and the wide availability of inexpensive computers have made it possible to gather and analyze network data on a large scale, and the development of a variety of new theoretical tools has allowed us to extract new knowledge from many different kinds of networks.The study of networks is broadly interdisciplinary and important developments have occurred in many fields, including mathematics, physics, computer and information sciences, biology, and the social sciences. This book brings together for the first time the most important breakthroughs in each of these fields and presents them in a coherent fashion, highlighting the strong interconnections between work in different areas.Subjects covered include the measurement and structure of networks in many branches of science, methods for analyzing network data, including methods developed in physics, statistics, and sociology, the fundamentals of graph theory, computer algorithms, and spectral methods, mathematical models of networks, including random graph models and generative models, and theories of dynamical processes taking place on networks.
Rationality: From AI to Zombies
Eliezer Yudkowsky - 2015
Real rationality, of the sort studied by psychologists, social scientists, and mathematicians. The kind of rationality where you make good decisions, even when it's hard; where you reason well, even in the face of massive uncertainty; where you recognize and make full use of your fuzzy intuitions and emotions, rather than trying to discard them. In "Rationality: From AI to Zombies," Eliezer Yudkowsky explains the science underlying human irrationality with a mix of fables, argumentative essays, and personal vignettes. These eye-opening accounts of how the mind works (and how, all too often, it doesn't!) are then put to the test through some genuinely difficult puzzles: computer scientists' debates about the future of artificial intelligence (AI), physicists' debates about the relationship between the quantum and classical worlds, philosophers' debates about the metaphysics of zombies and the nature of morality, and many more. In the process, "Rationality: From AI to Zombies" delves into the human significance of correct reasoning more deeply than you'll find in any conventional textbook on cognitive science or philosophy of mind. A decision theorist and researcher at the Machine Intelligence Research Institute, Yudkowsky published earlier drafts of his writings to the websites Overcoming Bias and Less Wrong. "Rationality: From AI to Zombies" compiles six volumes of Yudkowsky's essays into a single electronic tome. Collectively, these sequences of linked essays serve as a rich and lively introduction to the science—and the art—of human rationality.
R for Data Science: Import, Tidy, Transform, Visualize, and Model Data
Hadley Wickham - 2016
This book introduces you to R, RStudio, and the tidyverse, a collection of R packages designed to work together to make data science fast, fluent, and fun. Suitable for readers with no previous programming experience, R for Data Science is designed to get you doing data science as quickly as possible.
Authors Hadley Wickham and Garrett Grolemund guide you through the steps of importing, wrangling, exploring, and modeling your data and communicating the results. You’ll get a complete, big-picture understanding of the data science cycle, along with basic tools you need to manage the details. Each section of the book is paired with exercises to help you practice what you’ve learned along the way.
You’ll learn how to:
Wrangle—transform your datasets into a form convenient for analysis
Program—learn powerful R tools for solving data problems with greater clarity and ease
Explore—examine your data, generate hypotheses, and quickly test them
Model—provide a low-dimensional summary that captures true "signals" in your dataset
Communicate—learn R Markdown for integrating prose, code, and results
Probabilistic Graphical Models: Principles and Techniques
Daphne Koller - 2009
The framework of probabilistic graphical models, presented in this book, provides a general approach for this task. The approach is model-based, allowing interpretable models to be constructed and then manipulated by reasoning algorithms. These models can also be learned automatically from data, allowing the approach to be used in cases where manually constructing a model is difficult or even impossible. Because uncertainty is an inescapable aspect of most real-world applications, the book focuses on probabilistic models, which make the uncertainty explicit and provide models that are more faithful to reality.Probabilistic Graphical Models discusses a variety of models, spanning Bayesian networks, undirected Markov networks, discrete and continuous models, and extensions to deal with dynamical systems and relational data. For each class of models, the text describes the three fundamental cornerstones: representation, inference, and learning, presenting both basic concepts and advanced techniques. Finally, the book considers the use of the proposed framework for causal reasoning and decision making under uncertainty. The main text in each chapter provides the detailed technical development of the key ideas. Most chapters also include boxes with additional material: skill boxes, which describe techniques; case study boxes, which discuss empirical cases related to the approach described in the text, including applications in computer vision, robotics, natural language understanding, and computational biology; and concept boxes, which present significant concepts drawn from the material in the chapter. Instructors (and readers) can group chapters in various combinations, from core topics to more technically advanced material, to suit their particular needs.
The Self Made Tapestry: Pattern Formation in Nature
Philip Ball - 1999
Now, in this lucid and accessibly written book, Philip Ball applies state-of-the-art scientific understanding from the fields of biology, chemistry, geology, physics, and mathematics to these ancient mysteries, revealing how nature's seemingly complex patterns originate in simple physical laws. Tracing the history of scientific thought about natural patterns, Ball shows how common presumptions--for example, that complex form must be guided by some intelligence or that form always follows function--are erroneous and continue to mislead scientists today. He investigates specific patterns in depth, revealing that these designs are self-organized and that simple, local interactions between component parts produce motifs like spots, stripes, branches, and honeycombs. In the process, he examines the mysterious phenomenon of symmetry and why it appears--and breaks--in similar ways in different systems. Finally, he attempts to answer this profound question: why are some patterns universal? Illustrations throughout the text, many in full color, beautifully illuminate Ball's ideas.
Nonzero: The Logic of Human Destiny
Robert Wright - 1999
Now Wright attempts something even more ambitious: explaining the direction of evolution and human history–and discerning where history will lead us next.In Nonzero: The Logic of Human Destiny, Wright asserts that, ever since the primordial ooze, life has followed a basic pattern. Organisms and human societies alike have grown more complex by mastering the challenges of internal cooperation. Wright's narrative ranges from fossilized bacteria to vampire bats, from stone-age villages to the World Trade Organization, uncovering such surprises as the benefits of barbarian hordes and the useful stability of feudalism. Here is history endowed with moral significance–a way of looking at our biological and cultural evolution that suggests, refreshingly, that human morality has improved over time, and that our instinct to discover meaning may itself serve a higher purpose. Insightful, witty, profound, Nonzero offers breathtaking implications for what we believe and how we adapt to technology's ongoing transformation of the world.From the Trade Paperback edition.
An Investigation of the Laws of Thought
George Boole - 1854
A timeless introduction to the field and a landmark in symbolic logic, showing that classical logic can be treated algebraically.
The Golden Ticket: P, Np, and the Search for the Impossible
Lance Fortnow - 2013
Simply stated, it asks whether every problem whose solution can be quickly checked by computer can also be quickly solved by computer. The Golden Ticket provides a nontechnical introduction to P-NP, its rich history, and its algorithmic implications for everything we do with computers and beyond. Lance Fortnow traces the history and development of P-NP, giving examples from a variety of disciplines, including economics, physics, and biology. He explores problems that capture the full difficulty of the P-NP dilemma, from discovering the shortest route through all the rides at Disney World to finding large groups of friends on Facebook. The Golden Ticket explores what we truly can and cannot achieve computationally, describing the benefits and unexpected challenges of this compelling problem.
Lauren Ipsum
Carlos Bueno - 2011
If the idea of a computer science book without computers upsets you, please close your eyes until you’ve finished reading the rest of this page.The truth is that computer science is not really about the computer. It is just a tool to help you see ideas more clearly. You can see the moon and stars without a telescope, smell the flowers without a fluoroscope, have fun without a funoscope, and be silly sans oscilloscope.You can also play with computer science without... you-know-what. Ideas are the real stuff of computer science. This book is about those ideas, and how to find them.
Reinforcement Learning: An Introduction
Richard S. Sutton - 1998
Their discussion ranges from the history of the field's intellectual foundations to the most recent developments and applications.Reinforcement learning, one of the most active research areas in artificial intelligence, is a computational approach to learning whereby an agent tries to maximize the total amount of reward it receives when interacting with a complex, uncertain environment. In Reinforcement Learning, Richard Sutton and Andrew Barto provide a clear and simple account of the key ideas and algorithms of reinforcement learning. Their discussion ranges from the history of the field's intellectual foundations to the most recent developments and applications. The only necessary mathematical background is familiarity with elementary concepts of probability.The book is divided into three parts. Part I defines the reinforcement learning problem in terms of Markov decision processes. Part II provides basic solution methods: dynamic programming, Monte Carlo methods, and temporal-difference learning. Part III presents a unified view of the solution methods and incorporates artificial neural networks, eligibility traces, and planning; the two final chapters present case studies and consider the future of reinforcement learning.
Life After Google: The Fall of Big Data and the Rise of the Blockchain Economy
George Gilder - 2018
Gilder says or writes is ever delivered at anything less than the fullest philosophical decibel... Mr. Gilder sounds less like a tech guru than a poet, and his words tumble out in a romantic cascade." “Google’s algorithms assume the world’s future is nothing more than the next moment in a random process. George Gilder shows how deep this assumption goes, what motivates people to make it, and why it’s wrong: the future depends on human action.” — Peter Thiel, founder of PayPal and Palantir Technologies and author of Zero to One: Notes on Startups, or How to Build the Future The Age of Google, built on big data and machine intelligence, has been an awesome era. But it’s coming to an end. In Life after Google, George Gilder—the peerless visionary of technology and culture—explains why Silicon Valley is suffering a nervous breakdown and what to expect as the post-Google age dawns. Google’s astonishing ability to “search and sort” attracts the entire world to its search engine and countless other goodies—videos, maps, email, calendars….And everything it offers is free, or so it seems. Instead of paying directly, users submit to advertising. The system of “aggregate and advertise” works—for a while—if you control an empire of data centers, but a market without prices strangles entrepreneurship and turns the Internet into a wasteland of ads. The crisis is not just economic. Even as advances in artificial intelligence induce delusions of omnipotence and transcendence, Silicon Valley has pretty much given up on security. The Internet firewalls supposedly protecting all those passwords and personal information have proved hopelessly permeable. The crisis cannot be solved within the current computer and network architecture. The future lies with the “cryptocosm”—the new architecture of the blockchain and its derivatives. Enabling cryptocurrencies such as bitcoin and ether, NEO and Hashgraph, it will provide the Internet a secure global payments system, ending the aggregate-and-advertise Age of Google. Silicon Valley, long dominated by a few giants, faces a “great unbundling,” which will disperse computer power and commerce and transform the economy and the Internet. Life after Google is almost here. For fans of "Wealth and Poverty," "Knowledge and Power," and "The Scandal of Money."
The End of Time: The Next Revolution in Our Understanding of the Universe
Julian Barbour - 1999
Although the laws of physics create a powerful impression that time is flowing, in fact there are only timeless `nows'. In The End of Time, the British theoretical physicist Julian Barbour describes the coming revolution in our understanding of the world: a quantum theory of the universe that brings together Einstein's general theory of relativity - which denies the existence of a unique time - and quantum mechanics - which demands one. Barbour believes that only the most radical of ideas can resolve the conflict between these two theories: that there is, quite literally, no time at all. The End of Time is the first full-length account of the crisis in our understanding that has enveloped quantum cosmology. Unifying thinking that has never been brought together before in a book for the general reader, Barbour reveals the true architecture of the universe and demonstrates how physics is coming up sharp against the extraordinary possibility that the sense of time passing emerges from a universe that is timeless. The heart of the book is the author's lucid description of how a world of stillness can appear to be teeming with motion: in this timeless world where all possible instants coexist, complex mathematical rules of quantum mechanics bind together a special selection of these instants in a coherent order that consciousness perceives as the flow of time. Finally, in a lucid and eloquent epilogue, the author speculates on the philosophical implications of his theory: Does free will exist? Is time travel possible? How did the universe begin? Where is heaven? Does the denial of time make life meaningless? Written with exceptional clarity and elegance, this profound and original work presents a dazzlingly powerful argument that all will be able to follow, but no-one with an interest in the workings of the universe will be able to ignore.
A Mind at Play: How Claude Shannon Invented the Information Age
Jimmy Soni - 2017
He constructed a fleet of customized unicycles and a flamethrowing trumpet, outfoxed Vegas casinos, and built juggling robots. He also wrote the seminal text of the digital revolution, which has been called “the Magna Carta of the Information Age.” His discoveries would lead contemporaries to compare him to Albert Einstein and Isaac Newton. His work anticipated by decades the world we’d be living in today—and gave mathematicians and engineers the tools to bring that world to pass.In this elegantly written, exhaustively researched biography, Jimmy Soni and Rob Goodman reveal Claude Shannon’s full story for the first time. It’s the story of a small-town Michigan boy whose career stretched from the era of room-sized computers powered by gears and string to the age of Apple. It’s the story of the origins of our digital world in the tunnels of MIT and the “idea factory” of Bell Labs, in the “scientists’ war” with Nazi Germany, and in the work of Shannon’s collaborators and rivals, thinkers like Alan Turing, John von Neumann, Vannevar Bush, and Norbert Wiener.And it’s the story of Shannon’s life as an often reclusive, always playful genius. With access to Shannon’s family and friends, A Mind at Play brings this singular innovator and creative genius to life.