Einstein


Michael White - 1993
    With an updated preface for this new edition, EINSTEIN explains how the scientific icon changed our view of the world and why no one can ever hope to understand it without first understanding his work.

The New Quantum Universe


Tony Hey - 2003
    Quantum paradoxes and the eventful life of Schroedinger's Cat are explained, along with the Many Universe explanation of quantum measurement in this newly revised edition. Updated throughout, the book also looks ahead to the nanotechnology revolution and describes quantum cryptography, computing and teleportation. Including an account of quantum mechanics and science fiction, this accessible book is geared to the general reader. Anthony Hey teaches at the University of Southampton, UK, and is the co-author of several books, including two with Patrick Walters, The Quantum Universe (Cambridge, 1987), and Einstein's Mirror (Cambridge, 1997). Patrick Walters is a Lecturer in Continuing Education at the University of Wales at Swansea. He co-ordinates the Physical Science Programme in DACE which includes the Astronomy Programme. His research interests include science education, and he also writes non-technical books on science for the general reader and beginning undergraduates. First Edition Pb (1987): 0-521-31845-9

What the Ancient Wisdom Expects of Its Disciples: A Study Concerning the Mystery Schools


Manly P. Hall - 1996
    It also shows how enlightenment is earned by personal dedication to a spiritual code of conduct.

The Star Builders: Nuclear Fusion and the Race to Power the Planet


Arthur Turrell - 2021
    The ability to duplicate that process in a lab, once thought impossible, may now be closer than we think. Today, teams of scientists around the world are being assembled by the boldest entrepreneurs, big business, and governments to solve what is the most difficult technological challenge humanity has ever faced: building the equivalent of a star on earth. If their plans to capture star power are successful, they will unlock thousands, potentially millions, of years of clean, carbon-free energy. Not only would controlled nuclear fusion help solve the climate crisis, it could also make other highly desired technological ambitions possible—like journeying to the stars. Given the rising alarm over deterioration of the environment, and the strides being made in laser and magnetic field technology, powerful momentum is gathering behind fusion and the possibilities it offers. In The Star Builders, award-winning young plasma physicist Arthur Turrell “offers an optimistic outlook for the future of fusion power and is adamant about the need to invest in it” (The New York Times). Turrell describes fascinating star machines with ten times as many parts as the NASA Space Shuttle, and structures that extend over 400 acres in an accessible and entertaining account, spotlighting the individuals, firms, and institutions racing for the finish line: science-minded entrepreneurs like Jeff Bezos and Peter Thiel, companies like Goldman Sachs and Google, universities like Oxford and MIT, and virtually every rich nation. It’s an exciting and game-changing international quest that will make all of us winners.

Einstein in Berlin


Thomas Levenson - 2003
    Einstein in BerlinIn the spring of 1913 two of the giants of modern science traveled to Zurich. Their mission: to offer the most prestigious position in the very center of European scientific life to a man who had just six years before been a mere patent clerk. Albert Einstein accepted, arriving in Berlin in March 1914 to take up his new post. In December 1932 he left Berlin forever. “Take a good look,” he said to his wife as they walked away from their house. “You will never see it again.”In between, Einstein’s Berlin years capture in microcosm the odyssey of the twentieth century. It is a century that opens with extravagant hopes--and climaxes in unparalleled calamity. These are tumultuous times, seen through the life of one man who is at once witness to and architect of his day--and ours. He is present at the events that will shape the journey from the commencement of the Great War to the rumblings of the next one. We begin with the eminent scientist, already widely recognized for his special theory of relativity. His personal life is in turmoil, with his marriage collapsing, an affair under way. Within two years of his arrival in Berlin he makes one of the landmark discoveries of all time: a new theory of gravity--and before long is transformed into the first international pop star of science. He flourishes during a war he hates, and serves as an instrument of reconciliation in the early months of the peace; he becomes first a symbol of the hope of reason, then a focus for the rage and madness of the right. And throughout these years Berlin is an equal character, with its astonishing eruption of revolutionary pathways in art and architecture, in music, theater, and literature. Its wild street life and sexual excesses are notorious. But with the debacle of the depression and Hitler’s growing power, Berlin will be transformed, until by the end of 1932 it is no longer a safe home for Einstein. Once a hero, now vilified not only as the perpetrator of “Jewish physics” but as the preeminent symbol of all that the Nazis loathe, he knows it is time to leave.From the Hardcover edition.

Schrodinger's Rabbits: The Many Worlds of Quantum


Colin Bruce - 2004
    But recent technological advances have made the question both practical and urgent. A brilliantly imaginative group of physicists at Oxford University have risen to the challenge. This is their story. At long last, there is a sensible way to think about quantum mechanics. The new view abolishes the need to believe in randomness, long-range spooky forces, or conscious observers with mysterious powers to collapse cats into a state of life or death. But the new understanding comes at a price: we must accept that we live in a multiverse wherein countless versions of reality unfold side-by-side. The philosophical and personal consequences of this are awe-inspiring.The new interpretation has allowed imaginative physicists to conceive of wonderful new technologies: measuring devices that effectively share information between worlds and computers that can borrow the power of other worlds to perform calculations. Step by step, the problems initially associated with the original many-worlds formulation have been addressed and answered so that a clear but startling new picture has emerged.Just as Copenhagen was the centre of quantum discussion a lifetime ago, so Oxford has been the epicenter of the modern debate, with such figures as Roger Penrose and Anton Zeilinger fighting for single-world views, and David Deutsch, Lev Vaidman and a host of others for many-worlds.An independent physicist living in Oxford, Bruce has had a ringside seat to the debate. In his capable hands, we understand why the initially fantastic sounding many-worlds view is not only a useful way to look at things, but logically compelling. Parallel worlds are as real as the distant galaxies detected by the Hubble Space Telescope, even though the evidence for their existence may consist only of a few photons.

Superconductivity: A Very Short Introduction


Stephen J. Blundell - 2009
    Outlining the fascinating history of how superconductivity was discovered, and the race to understand its many mysterious and counter-intuitive phenomena, Stephen Blundell explains in accessible terms the theories that have been developed to explain it, and how they have influenced other areas of science, including the Higgs boson of particle physics and ideas about the early Universe. This Very Short Introduction examines the many strange phenomena observed in superconducting materials, the latest developments in high-temperature superconductivity, the potential of superconductivity to revolutionize the physics and technology of the future, and much more. It is a fascinating detective story, offering invaluable insights into some of the deepest and most beautiful ideas in physics today.About the Series: Combining authority with wit, accessibility, and style, Very Short Introductions offer an introduction to some of life's most interesting topics. Written by experts for the newcomer, they demonstrate the finest contemporary thinking about the central problems and issues in hundreds of key topics, from philosophy to Freud, quantum theory to Islam.

Understanding History: A Primer of Historical Method


Louis R. Gottschalk - 1950
    

The Singular Universe and the Reality of Time: A Proposal in Natural Philosophy


Roberto Mangabeira Unger - 2014
    The more we discover, the more puzzling the universe appears to be. How and why are the laws of nature what they are? A philosopher and a physicist, world-renowned for their radical ideas in their fields, argue for a revolution. To keep cosmology scientific, we must replace the old view in which the universe is governed by immutable laws by a new one in which laws evolve. Then we can hope to explain them. The revolution that Roberto Mangabeira Unger and Lee Smolin propose relies on three central ideas. There is only one universe at a time. Time is real: everything in the structure and regularities of nature changes sooner or later. Mathematics, which has trouble with time, is not the oracle of nature and the prophet of science; it is simply a tool with great power and immense limitations. The argument is readily accessible to non-scientists as well as to the physicists and cosmologists whom it challenges.