Book picks similar to
Quantum Reality by Nick Herbert
science
physics
non-fiction
philosophy
Alice in Quantumland: An Allegory of Quantum Physics
Robert Gilmore - 1994
Through the allegory of Alice's adventures and encounters, Gilmore makes the essential features of the quantum world clear and accessible. It is a thrilling introduction to some essential, often difficult-to-grasp concepts about the world we inhabit.
Secrets of Mental Math: The Mathemagician's Guide to Lightning Calculation and Amazing Math Tricks
Arthur T. Benjamin - 1993
Get ready to amaze your friends—and yourself—with incredible calculations you never thought you could master, as renowned “mathemagician” Arthur Benjamin shares his techniques for lightning-quick calculations and amazing number tricks. This book will teach you to do math in your head faster than you ever thought possible, dramatically improve your memory for numbers, and—maybe for the first time—make mathematics fun.Yes, even you can learn to do seemingly complex equations in your head; all you need to learn are a few tricks. You’ll be able to quickly multiply and divide triple digits, compute with fractions, and determine squares, cubes, and roots without blinking an eye. No matter what your age or current math ability, Secrets of Mental Math will allow you to perform fantastic feats of the mind effortlessly. This is the math they never taught you in school.Also available as an eBook
What the Bleep Do We Know!?: Discovering the Endless Possibilities for Altering Your Everyday Reality
William Arntz - 2005
Some things are both waves and particles. . .at the same time. Electrons simply disappear . . . all the time. If the universe is this wild and unpredictable, so full of possibility, why are your thoughts about your own life so limited? Hundreds of years ago, science and religion split apart; they became antagonists in the great game of explanation and discovery. But science and religion are two sides of the same coin. They both help explain the universe, our place in the great plan and the meaning of our lives. In fact, they can only begin to do that adequately when they work together.What the Bleep Do We Know?!TM is a book of amazing science. With the help of more than a dozen research and theoretical scientists, it takes you through the looking glass of quantum physics into a universe that is more bizarre and alive than ever imagined. Then it takes you beyond, into the outer-inner edges of our scientific knowledge of consciousness, perception, body chemistry and brain structure. What is a thought made of? What is reality made of? And most importantly, how does a thought change the nature of reality?This science leads not just to the material world, but deep into the realm of spirituality. If observation affects the outcome, we aren't merely part of the universe, but participants in it. If thoughts are more than random neural firings, than consciousness is more than an anatomical accident. A higher power exists, but is it truly out there? Where is the dividing line between out there and in here?This is not a book of definitive answers. This is a book of mind stretching questions. It is a book that shows you not the path, but the endless possibilities. Do you think you have to go to the same job every day, do the same errands, think the same thoughts, feel the same way? Well, think again.
The Fractal Geometry of Nature
Benoît B. Mandelbrot - 1977
The complexity of nature's shapes differs in kind, not merely degree, from that of the shapes of ordinary geometry, the geometry of fractal shapes.Now that the field has expanded greatly with many active researchers, Mandelbrot presents the definitive overview of the origins of his ideas and their new applications. The Fractal Geometry of Nature is based on his highly acclaimed earlier work, but has much broader and deeper coverage and more extensive illustrations.
The God Theory: Universes, Zero-Point Fields and What's Behind It All
Bernard Haisch - 2006
Minimal shelfwear. No markings. Pages are clean and bright. Binding is tight.
Thing Explainer: Complicated Stuff in Simple Words
Randall Munroe - 2015
Explore computer buildings (datacenters), the flat rocks we live on (tectonic plates), the things you use to steer a plane (airliner cockpit controls), and the little bags of water you're made of (cells).
Absolutely Small: How Quantum Theory Explains Our Everyday World
Michael D. Fayer - 2010
And liberated from its mathematical underpinnings, physics suddenly becomes accessible to anyone with the curiosity and imagination to explore its beauty. Science without math? It's not that unusual. For example, we can understand the concept of gravity without solving a single equation. So for all those who may have pondered what makes blueberries blue and strawberries red; for those who have wondered if sound really travels in waves; and why light behaves so differently from any other phenomenon in the universe, it's all a matter of quantum physics. Absolutely Small presents (and demystifies) the world of quantum science like no book before. It explores scientific concepts--from particles of light, to probability, to states of matter, to what makes greenhouse gases bad--in considerable depth, but using examples from the everyday world. Challenging without being intimidating, accessible but not condescending, Absolutely Small develops the reader's intuition for the very nature of things at their most basic and intriguing levels.
What a Wonderful World: One Man's Attempt to Explain the Big Stuff
Marcus Chown - 2013
Lucid, witty and hugely entertaining, it explains the basics of our essential existence, stopping along the way to show us why the Atlantic is widening by a thumbs' length each year, how money permits trade to time travel why the crucial advantage humans had over Neanderthals was sewing and why we are all living in a giant hologram.
Black Hole Blues and Other Songs from Outer Space
Janna Levin - 2016
A strong gravitational wave will briefly change that distance by less than the thickness of a human hair. We have perhaps less than a few tenths of a second to perform this measurement. And we don’t know if this infinitesimal event will come next month, next year or perhaps in thirty years.In 1916 Einstein predicted the existence of gravitational waves: miniscule ripples in the very fabric of spacetime generated by unfathomably powerful events. If such vibrations could somehow be recorded, we could observe our universe for the first time through sound: the hissing of the Big Bang, the whale-like tunes of collapsing stars, the low tones of merging galaxies, the drumbeat of two black holes collapsing into one. For decades, astrophysicists have searched for a way of doing so…In 2016 a team of hundreds of scientists at work on a billion-dollar experiment made history when they announced the first ever detection of a gravitational wave, confirming Einstein’s prediction. This is their story, and the story of the most sensitive scientific instrument ever made: LIGO.Based on complete access to LIGO and the scientists who created it, Black Hole Blues provides a firsthand account of this astonishing achievement: a compelling, intimate portrait of cutting-edge science at its most awe-inspiring and ambitious.
Innumeracy: Mathematical Illiteracy and Its Consequences
John Allen Paulos - 1988
Dozens of examples in innumeracy show us how it affects not only personal economics and travel plans, but explains mis-chosen mates, inappropriate drug-testing, and the allure of pseudo-science.
Physics for Future Presidents: The Science Behind the Headlines
Richard A. Muller - 2006
“A marvelously readable and level-headed explanation of basic science and how it relates to the issues.” —John Tierney, New York TimesThis is “must-have” information for all presidents—and citizens—of the twenty-first century: Is Iran’s nascent nuclear capability a genuine threat to the West? Are biochemical weapons likely to be developed by terrorists? Are there viable alternatives to fossil fuels that should be nurtured and supported by the government? Should nuclear power be encouraged? Can global warming be stopped?
Spooky Action at a Distance: The Phenomenon That Reimagines Space and Time—and What It Means for Black Holes, the Big Bang, and Theories of Everything
George Musser - 2015
Space is the venue of physics; it's where things exist, where they move and take shape. Yet over the past few decades, physicists have discovered a phenomenon that operates outside the confines of space and time: nonlocality-the ability of two particles to act in harmony no matter how far apart they may be. It appears to be almost magical. Einstein grappled with this oddity and couldn't come to terms with it, describing it as "spooky action at a distance." More recently, the mystery has deepened as other forms of nonlocality have been uncovered. This strange occurrence, which has direct connections to black holes, particle collisions, and even the workings of gravity, holds the potential to undermine our most basic understandings of physical reality. If space isn't what we thought it was, then what is it? In Spooky Action at a Distance, George Musser sets out to answer that question, offering a provocative exploration of nonlocality and a celebration of the scientists who are trying to explain it. Musser guides us on an epic journey into the lives of experimental physicists observing particles acting in tandem, astronomers finding galaxies that look statistically identical, and cosmologists hoping to unravel the paradoxes surrounding the big bang. He traces the often contentious debates over nonlocality through major discoveries and disruptions of the twentieth century and shows how scientists faced with the same undisputed experimental evidence develop wildly different explanations for that evidence. Their conclusions challenge our understanding of not only space and time but also the origins of the universe-and they suggest a new grand unified theory of physics. Delightfully readable, Spooky Action at a Distance is a mind-bending voyage to the frontiers of modern physics that will change the way we think about reality.Long-listed for the 2016 PEN/E. O. Wilson Literary Science Writing Award“An important book that provides insight into key new developments in our understanding of the nature of space, time and the universe. It will repay careful study.” —John Gribbin, The Wall Street Journal “An endlessly surprising foray into the current mother of physics' many knotty mysteries, the solving of which may unveil the weirdness of quantum particles, black holes, and the essential unity of nature.” —Kirkus Reviews (starred review)
Incompleteness: The Proof and Paradox of Kurt Gödel
Rebecca Goldstein - 2005
"A gem…An unforgettable account of one of the great moments in the history of human thought." —Steven PinkerProbing the life and work of Kurt Gödel, Incompleteness indelibly portrays the tortured genius whose vision rocked the stability of mathematical reasoning—and brought him to the edge of madness.
Coming of Age in the Milky Way
Timothy Ferris - 1988
From the first time mankind had an inkling of the vast space that surrounds us, those who study the universe have had to struggle against political and religious preconceptions. They have included some of the most charismatic, courageous, and idiosyncratic thinkers of all time. In Coming of Age in the Milky Way, Timothy Ferris uses his unique blend of rigorous research and captivating narrative skill to draw us into the lives and minds of these extraordinary figures, creating a landmark work of scientific history.
Arrival of the Fittest: Solving Evolution's Greatest Puzzle
Andreas Wagner - 2014
Nature’s many innovations—some uncannily perfect—call for natural principles that accelerate life’s ability to innovate.”Darwin’s theory of natural selection explains how useful adaptations are preserved over time. But the biggest mystery about evolution eluded him. As genetics pioneer Hugo de Vries put it, “natural selection may explain the survival of the fittest, but it cannot explain the arrival of the fittest.”Can random mutations over a mere 3.8 billion years really be responsible for wings, eyeballs, knees, camouflage, lactose digestion, photosynthesis, and the rest of nature’s creative marvels? And if the answer is no, what is the mechanism that explains evolution’s speed and efficiency?In Arrival of the Fittest, renowned evolutionary biologist Andreas Wagner draws on over fifteen years of research to present the missing piece in Darwin's theory. Using experimental and computational technologies that were heretofore unimagined, he has found that adaptations are not just driven by chance, but by a set of laws that allow nature to discover new molecules and mechanisms in a fraction of the time that random variation would take.Consider the Arctic cod, a fish that lives and thrives within six degrees of the North Pole, in waters that regularly fall below 0 degrees. At that temperature, the internal fluids of most organisms turn into ice crystals. And yet, the arctic cod survives by producing proteins that lower the freezing temperature of its body fluids, much like antifreeze does for a car’s engine coolant. The invention of those proteins is an archetypal example of nature’s enormous powers of creativity. Meticulously researched, carefully argued, evocatively written, and full of fascinating examples from the animal kingdom, Arrival of the Fittest offers up the final puzzle piece in the mystery of life’s rich diversity.