Book picks similar to
sed & awk by Dale Dougherty


programming
reference
technical
computer-science

xUnit Test Patterns: Refactoring Test Code


Gerard Meszaros - 2003
    An effective testing strategy will deliver new functionality more aggressively, accelerate user feedback, and improve quality. However, for many developers, creating effective automated tests is a unique and unfamiliar challenge. xUnit Test Patterns is the definitive guide to writing automated tests using xUnit, the most popular unit testing framework in use today. Agile coach and test automation expert Gerard Meszaros describes 68 proven patterns for making tests easier to write, understand, and maintain. He then shows you how to make them more robust and repeatable--and far more cost-effective. Loaded with information, this book feels like three books in one. The first part is a detailed tutorial on test automation that covers everything from test strategy to in-depth test coding. The second part, a catalog of 18 frequently encountered "test smells," provides trouble-shooting guidelines to help you determine the root cause of problems and the most applicable patterns. The third part contains detailed descriptions of each pattern, including refactoring instructions illustrated by extensive code samples in multiple programming languages. Topics covered includeWriting better tests--and writing them faster The four phases of automated tests: fixture setup, exercising the system under test, result verification, and fixture teardown Improving test coverage by isolating software from its environment using Test Stubs and Mock Objects Designing software for greater testability Using test "smells" (including code smells, behavior smells, and project smells) to spot problems and know when and how to eliminate them Refactoring tests for greater simplicity, robustness, and execution speed This book will benefit developers, managers, and testers working with any agile or conventional development process, whether doing test-driven development or writing the tests last. While the patterns and smells are especially applicable to all members of the xUnit family, they also apply to next-generation behavior-driven development frameworks such as RSpec and JBehave and to other kinds of test automation tools, including recorded test tools and data-driven test tools such as Fit and FitNesse.Visual Summary of the Pattern Language Foreword Preface Acknowledgments Introduction Refactoring a Test PART I: The Narratives Chapter 1 A Brief Tour Chapter 2 Test Smells Chapter 3 Goals of Test Automation Chapter 4 Philosophy of Test Automation Chapter 5 Principles of Test Automation Chapter 6 Test Automation Strategy Chapter 7 xUnit Basics Chapter 8 Transient Fixture Management Chapter 9 Persistent Fixture Management Chapter 10 Result Verification Chapter 11 Using Test Doubles Chapter 12 Organizing Our Tests Chapter 13 Testing with Databases Chapter 14 A Roadmap to Effective Test Automation PART II: The Test Smells Chapter 15 Code Smells Chapter 16 Behavior Smells Chapter 17 Project Smells PART III: The Patterns Chapter 18 Test Strategy Patterns Chapter 19 xUnit Basics Patterns Chapter 20 Fixture Setup Patterns Chapter 21 Result Verification Patterns Chapter 22 Fixture Teardown Patterns Chapter 23 Test Double Patterns Chapter 24 Test Organization Patterns Chapter 25 Database Patterns Chapter 26 Design-for-Testability Patterns Chapter 27 Value Patterns PART IV: Appendixes Appendix A Test Refactorings Appendix B xUnit Terminology Appendix C xUnit Family Members Appendix D Tools Appendix E Goals and Principles Appendix F Smells, Aliases, and Causes Appendix G Patterns, Aliases, and Variations Glossary References Index "

Deep Learning


Ian Goodfellow - 2016
    Because the computer gathers knowledge from experience, there is no need for a human computer operator to formally specify all the knowledge that the computer needs. The hierarchy of concepts allows the computer to learn complicated concepts by building them out of simpler ones; a graph of these hierarchies would be many layers deep. This book introduces a broad range of topics in deep learning.The text offers mathematical and conceptual background, covering relevant concepts in linear algebra, probability theory and information theory, numerical computation, and machine learning. It describes deep learning techniques used by practitioners in industry, including deep feedforward networks, regularization, optimization algorithms, convolutional networks, sequence modeling, and practical methodology; and it surveys such applications as natural language processing, speech recognition, computer vision, online recommendation systems, bioinformatics, and videogames. Finally, the book offers research perspectives, covering such theoretical topics as linear factor models, autoencoders, representation learning, structured probabilistic models, Monte Carlo methods, the partition function, approximate inference, and deep generative models.Deep Learning can be used by undergraduate or graduate students planning careers in either industry or research, and by software engineers who want to begin using deep learning in their products or platforms. A website offers supplementary material for both readers and instructors.

Ry's Git Tutorial


Ryan Hodson - 2014
    Its popularity among open-source developers makes Git a necessary tool for professional programmers, but it can also do wonders for your personal coding workflow. You’ll be able to experiment with new ideas, radically refactor existing code, and efficiently share changes with other developers—all without the slightest worry towards breaking your project.This comprehensive guide will walk you through the entire Git library, writing code and executing commands every step of the way. You'll create commits, revert snapshots, navigate branches, communicate with remote repositories, and experience core Git concepts first-hand.Designed for newcomers to distributed development, Ry's Git Tutorial presents this complex subject in simple terms that anyone can understand. Beginner and veteran programmers alike will find this book to be a fun, fast, and friendly introduction to Git-based revision control.

Graph Databases


Ian Robinson - 2013
    With this practical book, you’ll learn how to design and implement a graph database that brings the power of graphs to bear on a broad range of problem domains. Whether you want to speed up your response to user queries or build a database that can adapt as your business evolves, this book shows you how to apply the schema-free graph model to real-world problems.Learn how different organizations are using graph databases to outperform their competitors. With this book’s data modeling, query, and code examples, you’ll quickly be able to implement your own solution.Model data with the Cypher query language and property graph modelLearn best practices and common pitfalls when modeling with graphsPlan and implement a graph database solution in test-driven fashionExplore real-world examples to learn how and why organizations use a graph databaseUnderstand common patterns and components of graph database architectureUse analytical techniques and algorithms to mine graph database information

The Effective Engineer: How to Leverage Your Efforts In Software Engineering to Make a Disproportionate and Meaningful Impact


Edmond Lau - 2015
    I'm going to share that mindset with you — along with hundreds of actionable techniques and proven habits — so you can shortcut those years.Introducing The Effective Engineer — the only book designed specifically for today's software engineers, based on extensive interviews with engineering leaders at top tech companies, and packed with hundreds of techniques to accelerate your career.For two years, I embarked on a quest seeking an answer to one question:How do the most effective engineers make their efforts, their teams, and their careers more successful?I interviewed and collected stories from engineering VPs, directors, managers, and other leaders at today's top software companies: established, household names like Google, Facebook, Twitter, and LinkedIn; rapidly growing mid-sized companies like Dropbox, Square, Box, Airbnb, and Etsy; and startups like Reddit, Stripe, Instagram, and Lyft.These leaders shared stories about the most valuable insights they've learned and the most common and costly mistakes that they've seen engineers — sometimes themselves — make.This is just a small sampling of the hard questions I posed to them:- What engineering qualities correlate with future success?- What have you done that has paid off the highest returns?- What separates the most effective engineers you've worked with from everyone else?- What's the most valuable lesson your team has learned in the past year?- What advice do you give to new engineers on your team? Everyone's story is different, but many of the lessons share common themes.You'll get to hear stories like:- How did Instagram's team of 5 engineers build and support a service that grew to over 40 million users by the time the company was acquired?- How and why did Quora deploy code to production 40 to 50 times per day?- How did the team behind Google Docs become the fastest acquisition to rewrite its software to run on Google's infrastructure?- How does Etsy use continuous experimentation to design features that are guaranteed to increase revenue at launch?- How did Facebook's small infrastructure team effectively operate thousands of database servers?- How did Dropbox go from barely hiring any new engineers to nearly tripling its team size year-over-year? What's more, I've distilled their stories into actionable habits and lessons that you can follow step-by-step to make your career and your team more successful.The skills used by effective engineers are all learnable.And I'll teach them to you. With The Effective Engineer, I'll teach you a unifying framework called leverage — the value produced per unit of time invested — that you can use to identify the activities that produce disproportionate results.Here's a sneak peek at some of the lessons you'll learn. You'll learn how to:- Prioritize the right projects and tasks to increase your impact.- Earn more leeway from your peers and managers on your projects.- Spend less time maintaining and fixing software and more time building and shipping new features.- Produce more accurate software estimates.- Validate your ideas cheaply to reduce wasted work.- Navigate organizational and people-related bottlenecks.- Find the appropriate level of code reviews, testing, abstraction, and technical debt to balance speed and quality.- Shorten your debugging workflow to increase your iteration speed.

Effective Devops: Building a Culture of Collaboration, Affinity, and Tooling at Scale


Jennifer Davis - 2015
    Authors Katherine Daniels and Jennifer Davis provide with actionable strategies you can use to engineer sustainable changes in your environment regardless of your level within your organization.

Introducing Regular Expressions


Michael J. Fitzgerald - 2012
    You’ll learn the fundamentals step-by-step with the help of numerous examples, discovering first-hand how to match, extract, and transform text by matching specific words, characters, and patterns.Regular expressions are an essential part of a programmer’s toolkit, available in various Unix utlilities as well as programming languages such as Perl, Java, JavaScript, and C#. When you’ve finished this book, you’ll be familiar with the most commonly used syntax in regular expressions, and you’ll understand how using them will save you considerable time.Discover what regular expressions are and how they workLearn many of the differences between regular expressions used with command-line tools and in various programming languagesApply simple methods for finding patterns in text, including digits, letters, Unicode characters, and string literalsLearn how to use zero-width assertions and lookaroundsWork with groups, backreferences, character classes, and quantifiersUse regular expressions to mark up plain text with HTML5

Learn Python The Hard Way


Zed A. Shaw - 2010
    The title says it is the hard way to learn to writecode but it’s actually not. It’s the “hard” way only in that it’s the way people used to teach things. In this book youwill do something incredibly simple that all programmers actually do to learn a language: 1. Go through each exercise. 2. Type in each sample exactly. 3. Make it run.That’s it. This will be very difficult at first, but stick with it. If you go through this book, and do each exercise for1-2 hours a night, then you’ll have a good foundation for moving on to another book. You might not really learn“programming” from this book, but you will learn the foundation skills you need to start learning the language.This book’s job is to teach you the three most basic essential skills that a beginning programmer needs to know:Reading And Writing, Attention To Detail, Spotting Differences.

JavaScript Patterns


Stoyan Stefanov - 2010
    If you're an experienced developer looking to solve problems related to objects, functions, inheritance, and other language-specific categories, the abstractions and code templates in this guide are ideal -- whether you're writing a client-side, server-side, or desktop application with JavaScript.Written by JavaScript expert Stoyan Stefanov -- Senior Yahoo! Technical and architect of YSlow 2.0, the web page performance optimization tool -- JavaScript Patterns includes practical advice for implementing each pattern discussed, along with several hands-on examples. You'll also learn about anti-patterns: common programming approaches that cause more problems than they solve.Explore useful habits for writing high-quality JavaScript code, such as avoiding globals, using single var declarations, and moreLearn why literal notation patterns are simpler alternatives to constructor functionsDiscover different ways to define a function in JavaScriptCreate objects that go beyond the basic patterns of using object literals and constructor functionsLearn the options available for code reuse and inheritance in JavaScriptStudy sample JavaScript approaches to common design patterns such as Singleton, Factory, Decorator, and moreExamine patterns that apply specifically to the client-side browser environment

Working with UNIX Processes


Jesse Storimer - 2011
    Want to impress your coworkers and write the fastest, most efficient, stable code you ever have? Don't reinvent the wheel. Reuse decades of research into battle-tested, highly optimized, and proven techniques available on any Unix system.This book will teach you what you need to know so that you can write your own servers, debug your entire stack when things go awry, and understand how things are working under the hood.http://www.jstorimer.com/products/wor...

Joel on Software


Joel Spolsky - 2004
    For years, Joel Spolsky has done exactly this at www.joelonsoftware.com. Now, for the first time, you can own a collection of the most important essays from his site in one book, with exclusive commentary and new insights from joel.

Python Data Science Handbook: Tools and Techniques for Developers


Jake Vanderplas - 2016
    Several resources exist for individual pieces of this data science stack, but only with the Python Data Science Handbook do you get them all—IPython, NumPy, Pandas, Matplotlib, Scikit-Learn, and other related tools.Working scientists and data crunchers familiar with reading and writing Python code will find this comprehensive desk reference ideal for tackling day-to-day issues: manipulating, transforming, and cleaning data; visualizing different types of data; and using data to build statistical or machine learning models. Quite simply, this is the must-have reference for scientific computing in Python.With this handbook, you’ll learn how to use: * IPython and Jupyter: provide computational environments for data scientists using Python * NumPy: includes the ndarray for efficient storage and manipulation of dense data arrays in Python * Pandas: features the DataFrame for efficient storage and manipulation of labeled/columnar data in Python * Matplotlib: includes capabilities for a flexible range of data visualizations in Python * Scikit-Learn: for efficient and clean Python implementations of the most important and established machine learning algorithms

Perl in a Nutshell


Nathan Patwardhan - 1998
    This book covers all the core features of the language. It ranges widely through the Perl programmer's universe, gathering together in convenient form a wealth of information about Perl itself and its application to CGI scripts, network programming, database interaction, and graphical user interfaces. It also gives detailed coverage about using Perl within a Win32 environment.This book assembles more information about the language in one place than any other reference work. Here are just some of the topics covered in the book:Basic language reference Introduction to using Perl modules Perl and CGI: CGI basics, CGI.pm, mod_perl DBI, the database-independent API for Perl Sockets programming in Perl LWP, the library for World Wide Web programming in Perl The Net::* modules As part of the successful "in a Nutshell" series of books from O'Reilly & Associates, Perl in a Nutshell is for readers who want a single reference for all their needs.

Mining the Social Web: Analyzing Data from Facebook, Twitter, LinkedIn, and Other Social Media Sites


Matthew A. Russell - 2011
    You’ll learn how to combine social web data, analysis techniques, and visualization to find what you’ve been looking for in the social haystack—as well as useful information you didn’t know existed.Each standalone chapter introduces techniques for mining data in different areas of the social Web, including blogs and email. All you need to get started is a programming background and a willingness to learn basic Python tools.Get a straightforward synopsis of the social web landscapeUse adaptable scripts on GitHub to harvest data from social network APIs such as Twitter, Facebook, LinkedIn, and Google+Learn how to employ easy-to-use Python tools to slice and dice the data you collectExplore social connections in microformats with the XHTML Friends NetworkApply advanced mining techniques such as TF-IDF, cosine similarity, collocation analysis, document summarization, and clique detectionBuild interactive visualizations with web technologies based upon HTML5 and JavaScript toolkits"A rich, compact, useful, practical introduction to a galaxy of tools, techniques, and theories for exploring structured and unstructured data." --Alex Martelli, Senior Staff Engineer, Google

Cryptography Engineering: Design Principles and Practical Applications


Niels Ferguson - 2010
    Cryptography is vital to keeping information safe, in an era when the formula to do so becomes more and more challenging. Written by a team of world-renowned cryptography experts, this essential guide is the definitive introduction to all major areas of cryptography: message security, key negotiation, and key management. You'll learn how to think like a cryptographer. You'll discover techniques for building cryptography into products from the start and you'll examine the many technical changes in the field.After a basic overview of cryptography and what it means today, this indispensable resource covers such topics as block ciphers, block modes, hash functions, encryption modes, message authentication codes, implementation issues, negotiation protocols, and more. Helpful examples and hands-on exercises enhance your understanding of the multi-faceted field of cryptography.An author team of internationally recognized cryptography experts updates you on vital topics in the field of cryptography Shows you how to build cryptography into products from the start Examines updates and changes to cryptography Includes coverage on key servers, message security, authentication codes, new standards, block ciphers, message authentication codes, and more Cryptography Engineering gets you up to speed in the ever-evolving field of cryptography.