Make Your Own Neural Network


Tariq Rashid - 2016
     Neural networks are a key element of deep learning and artificial intelligence, which today is capable of some truly impressive feats. Yet too few really understand how neural networks actually work. This guide will take you on a fun and unhurried journey, starting from very simple ideas, and gradually building up an understanding of how neural networks work. You won't need any mathematics beyond secondary school, and an accessible introduction to calculus is also included. The ambition of this guide is to make neural networks as accessible as possible to as many readers as possible - there are enough texts for advanced readers already! You'll learn to code in Python and make your own neural network, teaching it to recognise human handwritten numbers, and performing as well as professionally developed networks. Part 1 is about ideas. We introduce the mathematical ideas underlying the neural networks, gently with lots of illustrations and examples. Part 2 is practical. We introduce the popular and easy to learn Python programming language, and gradually builds up a neural network which can learn to recognise human handwritten numbers, easily getting it to perform as well as networks made by professionals. Part 3 extends these ideas further. We push the performance of our neural network to an industry leading 98% using only simple ideas and code, test the network on your own handwriting, take a privileged peek inside the mysterious mind of a neural network, and even get it all working on a Raspberry Pi. All the code in this has been tested to work on a Raspberry Pi Zero.

Machine Learning for Absolute Beginners


Oliver Theobald - 2017
    The manner in which computers are now able to mimic human thinking is rapidly exceeding human capabilities in everything from chess to picking the winner of a song contest. In the age of machine learning, computers do not strictly need to receive an ‘input command’ to perform a task, but rather ‘input data’. From the input of data they are able to form their own decisions and take actions virtually as a human would. But as a machine, can consider many more scenarios and execute calculations to solve complex problems. This is the element that excites companies and budding machine learning engineers the most. The ability to solve complex problems never before attempted. This is also perhaps one reason why you are looking at purchasing this book, to gain a beginner's introduction to machine learning. This book provides a plain English introduction to the following topics: - Artificial Intelligence - Big Data - Downloading Free Datasets - Regression - Support Vector Machine Algorithms - Deep Learning/Neural Networks - Data Reduction - Clustering - Association Analysis - Decision Trees - Recommenders - Machine Learning Careers This book has recently been updated following feedback from readers. Version II now includes: - New Chapter: Decision Trees - Cleanup of minor errors

Natural Language Processing with Python


Steven Bird - 2009
    With it, you'll learn how to write Python programs that work with large collections of unstructured text. You'll access richly annotated datasets using a comprehensive range of linguistic data structures, and you'll understand the main algorithms for analyzing the content and structure of written communication.Packed with examples and exercises, Natural Language Processing with Python will help you: Extract information from unstructured text, either to guess the topic or identify "named entities" Analyze linguistic structure in text, including parsing and semantic analysis Access popular linguistic databases, including WordNet and treebanks Integrate techniques drawn from fields as diverse as linguistics and artificial intelligenceThis book will help you gain practical skills in natural language processing using the Python programming language and the Natural Language Toolkit (NLTK) open source library. If you're interested in developing web applications, analyzing multilingual news sources, or documenting endangered languages -- or if you're simply curious to have a programmer's perspective on how human language works -- you'll find Natural Language Processing with Python both fascinating and immensely useful.

Principles of Mathematical Analysis


Walter Rudin - 1964
    The text begins with a discussion of the real number system as a complete ordered field. (Dedekind's construction is now treated in an appendix to Chapter I.) The topological background needed for the development of convergence, continuity, differentiation and integration is provided in Chapter 2. There is a new section on the gamma function, and many new and interesting exercises are included. This text is part of the Walter Rudin Student Series in Advanced Mathematics.

Partial Differential Equations for Scientists and Engineers


Stanley J. Farlow - 1982
    Indeed, such equations are crucial to mathematical physics. Although simplifications can be made that reduce these equations to ordinary differential equations, nevertheless the complete description of physical systems resides in the general area of partial differential equations.This highly useful text shows the reader how to formulate a partial differential equation from the physical problem (constructing the mathematical model) and how to solve the equation (along with initial and boundary conditions). Written for advanced undergraduate and graduate students, as well as professionals working in the applied sciences, this clearly written book offers realistic, practical coverage of diffusion-type problems, hyperbolic-type problems, elliptic-type problems, and numerical and approximate methods. Each chapter contains a selection of relevant problems (answers are provided) and suggestions for further reading.

How to Prove It: A Structured Approach


Daniel J. Velleman - 1994
    The book begins with the basic concepts of logic and set theory, to familiarize students with the language of mathematics and how it is interpreted. These concepts are used as the basis for a step-by-step breakdown of the most important techniques used in constructing proofs. To help students construct their own proofs, this new edition contains over 200 new exercises, selected solutions, and an introduction to Proof Designer software. No background beyond standard high school mathematics is assumed. Previous Edition Hb (1994) 0-521-44116-1 Previous Edition Pb (1994) 0-521-44663-5

Discovering Statistics Using R


Andy Field - 2012
    Like its sister textbook, Discovering Statistics Using R is written in an irreverent style and follows the same ground-breaking structure and pedagogical approach. The core material is enhanced by a cast of characters to help the reader on their way, hundreds of examples, self-assessment tests to consolidate knowledge, and additional website material for those wanting to learn more.

Machine Learning with R


Brett Lantz - 2014
    This practical guide that covers all of the need to know topics in a very systematic way. For each machine learning approach, each step in the process is detailed, from preparing the data for analysis to evaluating the results. These steps will build the knowledge you need to apply them to your own data science tasks.Intended for those who want to learn how to use R's machine learning capabilities and gain insight from your data. Perhaps you already know a bit about machine learning, but have never used R; or perhaps you know a little R but are new to machine learning. In either case, this book will get you up and running quickly. It would be helpful to have a bit of familiarity with basic programming concepts, but no prior experience is required.

Quantum Computing Since Democritus


Scott Aaronson - 2013
    Full of insights, arguments and philosophical perspectives, the book covers an amazing array of topics. Beginning in antiquity with Democritus, it progresses through logic and set theory, computability and complexity theory, quantum computing, cryptography, the information content of quantum states and the interpretation of quantum mechanics. There are also extended discussions about time travel, Newcomb's Paradox, the anthropic principle and the views of Roger Penrose. Aaronson's informal style makes this fascinating book accessible to readers with scientific backgrounds, as well as students and researchers working in physics, computer science, mathematics and philosophy.

Fluent Python: Clear, Concise, and Effective Programming


Luciano Ramalho - 2015
    With this hands-on guide, you'll learn how to write effective, idiomatic Python code by leveraging its best and possibly most neglected features. Author Luciano Ramalho takes you through Python's core language features and libraries, and shows you how to make your code shorter, faster, and more readable at the same time.Many experienced programmers try to bend Python to fit patterns they learned from other languages, and never discover Python features outside of their experience. With this book, those Python programmers will thoroughly learn how to become proficient in Python 3.This book covers:Python data model: understand how special methods are the key to the consistent behavior of objectsData structures: take full advantage of built-in types, and understand the text vs bytes duality in the Unicode ageFunctions as objects: view Python functions as first-class objects, and understand how this affects popular design patternsObject-oriented idioms: build classes by learning about references, mutability, interfaces, operator overloading, and multiple inheritanceControl flow: leverage context managers, generators, coroutines, and concurrency with the concurrent.futures and asyncio packagesMetaprogramming: understand how properties, attribute descriptors, class decorators, and metaclasses work"

Introduction to Machine Learning with Python: A Guide for Data Scientists


Andreas C. Müller - 2015
    If you use Python, even as a beginner, this book will teach you practical ways to build your own machine learning solutions. With all the data available today, machine learning applications are limited only by your imagination.You'll learn the steps necessary to create a successful machine-learning application with Python and the scikit-learn library. Authors Andreas Muller and Sarah Guido focus on the practical aspects of using machine learning algorithms, rather than the math behind them. Familiarity with the NumPy and matplotlib libraries will help you get even more from this book.With this book, you'll learn:Fundamental concepts and applications of machine learningAdvantages and shortcomings of widely used machine learning algorithmsHow to represent data processed by machine learning, including which data aspects to focus onAdvanced methods for model evaluation and parameter tuningThe concept of pipelines for chaining models and encapsulating your workflowMethods for working with text data, including text-specific processing techniquesSuggestions for improving your machine learning and data science skills

Grokking Deep Learning


Andrew W. Trask - 2017
    Loosely based on neuron behavior inside of human brains, these systems are rapidly catching up with the intelligence of their human creators, defeating the world champion Go player, achieving superhuman performance on video games, driving cars, translating languages, and sometimes even helping law enforcement fight crime. Deep Learning is a revolution that is changing every industry across the globe.Grokking Deep Learning is the perfect place to begin your deep learning journey. Rather than just learn the “black box” API of some library or framework, you will actually understand how to build these algorithms completely from scratch. You will understand how Deep Learning is able to learn at levels greater than humans. You will be able to understand the “brain” behind state-of-the-art Artificial Intelligence. Furthermore, unlike other courses that assume advanced knowledge of Calculus and leverage complex mathematical notation, if you’re a Python hacker who passed high-school algebra, you’re ready to go. And at the end, you’ll even build an A.I. that will learn to defeat you in a classic Atari game.

The Moscow Puzzles: 359 Mathematical Recreations


Boris A. Kordemsky - 1954
    Since its first appearance in 1956 there have been eight editions as well as translations from the original Russian into Ukrainian, Estonian, Lettish, and Lithuanian. Almost a million copies of the Russian version alone have been sold.Part of the reason for the book's success is its marvelously varied assortment of brainteasers ranging from simple "catch" riddles to difficult problems (none, however, requiring advanced mathematics). Many of the puzzles will be new to Western readers, while some familiar problems have been clothed in new forms. Often the puzzles are presented in the form of charming stories that provide non-Russian readers with valuable insights into contemporary Russian life and customs. In addition, Martin Gardner, former editor of the Mathematical Games Department, Scientific American, has clarified and simplified the book to make it as easy as possible for an English-reading public to understand and enjoy. He has been careful, moreover, to retain nearly all the freshness, warmth, and humor of the original.Lavishly illustrated with over 400 clear diagrams and amusing sketches, this inexpensive edition of the first English translation will offer weeks or even months of stimulating entertainment. It belongs in the library of every puzzlist or lover of recreational mathematics.

From Mathematics to Generic Programming


Alexander A. Stepanov - 2014
    If you're a reasonably proficient programmer who can think logically, you have all the background you'll need. Stepanov and Rose introduce the relevant abstract algebra and number theory with exceptional clarity. They carefully explain the problems mathematicians first needed to solve, and then show how these mathematical solutions translate to generic programming and the creation of more effective and elegant code. To demonstrate the crucial role these mathematical principles play in many modern applications, the authors show how to use these results and generalized algorithms to implement a real-world public-key cryptosystem. As you read this book, you'll master the thought processes necessary for effective programming and learn how to generalize narrowly conceived algorithms to widen their usefulness without losing efficiency. You'll also gain deep insight into the value of mathematics to programming--insight that will prove invaluable no matter what programming languages and paradigms you use. You will learn aboutHow to generalize a four thousand-year-old algorithm, demonstrating indispensable lessons about clarity and efficiencyAncient paradoxes, beautiful theorems, and the productive tension between continuous and discreteA simple algorithm for finding greatest common divisor (GCD) and modern abstractions that build on itPowerful mathematical approaches to abstractionHow abstract algebra provides the idea at the heart of generic programmingAxioms, proofs, theories, and models: using mathematical techniques to organize knowledge about your algorithms and data structuresSurprising subtleties of simple programming tasks and what you can learn from themHow practical implementations can exploit theoretical knowledge

Object-Oriented Programming in C++


Robert Lafore - 1995
    While the structure of this book is similar to that of the previous edition, each chapter reflects the latest ANSI C++ standard and the examples have been thoroughly revised to reflect current practices and standards.