Superstrings And The Search For The Theory Of Everything


F. David Peat - 1988
    David Peat explains the development and meaning of this Superstring Theory in a thoroughly readable, dramatic manner accessible to lay readers with no knowledge of mathematics. The consequences of the Superstring Theory are nothing less than astonishing.

The Secret Life of Dust: From the Cosmos to the Kitchen Counter, the Big Consequences of Little Things


Hannah Holmes - 2001
    But in the hands of author Hannah Holmes, it becomes a dazzling and mysterious force; Dust, we discover, built the planet we walk upon. And it tinkers with the weather and spices the air we breathe. Billions of tons of it rise annually into the air--the dust of deserts and forgotten kings mixing with volcanic ash, sea salt, leaf fragments, scales from butterfly wings, shreds of T-shirts, and fireplace soot. Eventually, though, all this dust must settle.The story of restless dust begins among exploding stars, then treks through the dinosaur beds of the Gobi Desert, drills into Antarctic glaciers, filters living dusts from the wind, and probes the dark underbelly of the living-room couch. Along the way, Holmes introduces a delightful cast of characters--the scientists who study dust. Some investigate its dark side: how it killed off dinosaurs and how its industrial descendents are killing us today. Others sample the shower of Saharan dust that nourishes Caribbean jungles, or venture into the microscopic jungle of the bedroom carpet. Like The Secret Life of Dust, however, all of them unveil the mayhem and magic wrought by little things.Hannah Holmes (Portland, ME) is a science and natural history writer for the Discovery Channel Online. Her freelance work has been widely published, appearing in the Los Angeles Times Magazine, the New York Times Magazine, Outside, Sierra, National Geographic Traveler, and Escape. Her broadcast work has been featured on Living on Earth and the Discovery Channel Online's Science Live.

Infinite Potential: What Quantum Physics Reveals About How We Should Live


Lothar Schäfer - 2013
    With his own research as well as that of some of the most distinguished scientists of our time, Schäfer moves us from a reality of Darwinian competition to cooperation, a meaningless universe to a meaningful one, and a disconnected, isolated existence to an interconnected one. In so doing, he shows us that our potential is infinite and calls us to live in accordance with the order of the universe, creating a society based on the cosmic principle of connection, emphasizing cooperation and community.

Einstein's Dice and Schrödinger's Cat: How Two Great Minds Battled Quantum Randomness to Create a Unified Theory of Physics


Paul Halpern - 2015
    Einstein famously quipped that God does not play dice with the universe, and Schrödinger is equally well known for his thought experiment about the cat in the box who ends up “spread out” in a probabilistic state, neither wholly alive nor wholly dead. Both of these famous images arose from these two men’s dissatisfaction with quantum weirdness and with their assertion that underneath it all, there must be some essentially deterministic world. Even though it was Einstein’s own theories that made quantum mechanics possible, both he and Schrödinger could not bear the idea that the universe was, at its most fundamental level, random.As the Second World War raged, both men struggled to produce a theory that would describe in full the universe’s ultimate design, first as collaborators, then as competitors. They both ultimately failed in their search for a Grand Unified Theory—not only because quantum mechanics is true, but because Einstein and Schrödinger were also missing a key component: of the four forces we recognize today (gravity, electromagnetism, the weak force, and the strong force), only gravity and electromagnetism were known at the time.Despite their failures, though, much of modern physics remains focused on the search for a Grand Unified Theory. As Halpern explains, the recent discovery of the Higgs Boson makes the Standard Model—the closest thing we have to a unified theory—nearly complete. And while Einstein and Schrödinger tried and failed to explain everything in the cosmos through pure geometry, the development of string theory has, in its own quantum way, brought this idea back into vogue. As in so many things, even when he was wrong, Einstein couldn’t help but be right.

Black Hole Blues and Other Songs from Outer Space


Janna Levin - 2016
    A strong gravitational wave will briefly change that distance by less than the thickness of a human hair. We have perhaps less than a few tenths of a second to perform this measurement. And we don’t know if this infinitesimal event will come next month, next year or perhaps in thirty years.In 1916 Einstein predicted the existence of gravitational waves: miniscule ripples in the very fabric of spacetime generated by unfathomably powerful events. If such vibrations could somehow be recorded, we could observe our universe for the first time through sound: the hissing of the Big Bang, the whale-like tunes of collapsing stars, the low tones of merging galaxies, the drumbeat of two black holes collapsing into one. For decades, astrophysicists have searched for a way of doing so…In 2016 a team of hundreds of scientists at work on a billion-dollar experiment made history when they announced the first ever detection of a gravitational wave, confirming Einstein’s prediction. This is their story, and the story of the most sensitive scientific instrument ever made: LIGO.Based on complete access to LIGO and the scientists who created it, Black Hole Blues provides a firsthand account of this astonishing achievement: a compelling, intimate portrait of cutting-edge science at its most awe-inspiring and ambitious.

Light of the Stars: Alien Worlds and the Fate of the Earth


Adam Frank - 2018
    Astrophysicist Adam Frank traces the question of alien life and intelligence from the ancient Greeks to the leading thinkers of our own time, and shows how we as a civilization can only hope to survive climate change if we recognize what science has recently discovered: that we are just one of ten billion trillion planets in the Universe, and it’s highly likely that many of those planets hosted technologically advanced alien civilizations. What’s more, each of those civilizations must have faced the same challenge of civilization-driven climate change.Written with great clarity and conviction, Light of the Stars builds on the inspiring work of pioneering scientists such as Frank Drake and Carl Sagan, whose work at the dawn of the space age began building the new science of astrobiology; Jack James, the Texas-born engineer who drove NASA’s first planetary missions to success; Vladimir Vernadsky, the Russian geochemist who first envisioned the Earth’s biosphere; and James Lovelock and Lynn Margulis, who invented Gaia theory. Frank recounts the perilous journey NASA undertook across millions of miles of deep space to get its probes to Venus and Mars, yielding our first view of the cosmic laws of planets and climate that changed our understanding of our place in the universe.Thrilling science at the grandest of scales, Light of the Stars explores what may be the largest question of all: What can the likely presence of life on other worlds tell us about our own fate?

Present at the Creation: The Story of CERN and the Large Hadron Collider


Amir D. Aczel - 2010
    A project of CERN, the European Organization for Nuclear Research, its audacious purpose is to re-create, in a 16.5-mile-long circular tunnel under the French-Swiss countryside, the immensely hot and dense conditions that existed some 13.7 billion years ago within the first trillionth of a second after the fiery birth of our universe. The collider is now crashing protons at record energy levels never created by scientists before, and it will reach even higher levels by 2013. Its superconducting magnets guide two beams of protons in opposite directions around the track. After accelerating the beams to 99.9999991 percent of the speed of light, it collides the protons head-on, annihilating them in a flash of energy sufficient—in accordance with Einstein’s elegant statement of mass-energy equivalence, E=mc2—to coalesce into a shower of particles and phenomena that have not existed since the first moments of creation. Within the LHC’s detectors, scientists hope to see empirical confirmation of key theories in physics and cosmology.In telling the story of what is perhaps the most anticipated experiment in the history of science, Amir D. Aczel takes us inside the control rooms at CERN at key moments when an international team of top researchers begins to discover whether this multibillion-euro investment will fulfill its spectacular promise. Through the eyes and words of the men and women who conceived and built CERN and the LHC—and with the same clarity and depth of knowledge he demonstrated in the bestselling Fermat’s Last Theorem—Aczel enriches all of us with a firm grounding in the scientific concepts we will need to appreciate the discoveries that will almost certainly spring forth when the full power of this great machine is finally unleashed.Will the Higgs boson make its breathlessly awaited appearance, confirming at last the Standard Model of particles and their interactions that is among the great theoretical achievements of twentieth-century physics? Will the hidden dimensions posited by string theory be revealed? Will we at last identify the nature of the dark matter that makes up more than 90 percent of the cosmos? With Present at the Creation, written by one of today’s finest popular interpreters of basic science, we can all follow the progress of an experiment that promises to greatly satisfy the curiosity of anyone who ever concurred with Einstein when he said, “I want to know God’s thoughts—the rest is details.”

The Amazing Story of Quantum Mechanics: A Math-Free Exploration of the Science that Made Our World


James Kakalios - 2010
    Using illustrations and examples from science fiction pulp magazines and comic books, The Amazing Story of Quantum Mechanics explains the fundamental principles of quantum mechanics that underlie the world we live in.Watch a Video

Ask an Astronaut: My Guide to Life in Space


Tim Peake - 2017
    From training to launch, from his historic spacewalk to re-entry, he reveals for readers of all ages the cutting-edge science behind his ground-breaking experiments, and the wonders of day-to-day life on board the International Space Station.The public were invited to submit questions using the hashtag #askanastronaut, and a selection are answered by Tim in the book, which will be accompanied with illustrations, diagrams and never-before-seen photos.Tim is pleased to announce that, as with his previous book, royalties received from the book will be donated to The Prince’s Trust.

Periodic Tales: The Curious Lives of the Elements


Hugh Aldersey-Williams - 2011
    Like you, the elements have lives: personalities and attitudes, talents and shortcomings, stories rich with meaning. You may think of them as the inscrutable letters of the periodic table but you know them much better than you realise. Welcome to a dazzling tour through history and literature, science and art. Here you'll meet iron that rains from the heavens and noble gases that light the way to vice. You'll learn how lead can tell your future while zinc may one day line your coffin. You'll discover what connects the bones in your body with the Whitehouse in Washington, the glow of a streetlamp with the salt on your dinner table. From ancient civilisations to contemporary culture, from the oxygen of publicity to the phosphorus in your pee, the elements are near and far and all around us. Unlocking their astonishing secrets and colourful pasts, Periodic Tales will take you on a voyage of wonder and discovery, excitement and novelty, beauty and truth. Along the way, you'll find that their stories are our stories, and their lives are inextricable from our own.

Einstein's Unfinished Symphony: Listening to the Sounds of Space-Time


Marcia Bartusiak - 2000
    Their quest: to be the first to detect gravitational waves, infinitesimal quakes that stretch and compress space-time and could add a brand-new dimension to our universal knowledge-allowing us to hear a sun going supernova, black holes colliding, and perhaps one day, the remnant rumble of the Big Bang itself...

Reality is Not What it Seems: The Journey to Quantum Gravity


Carlo Rovelli - 2014
    Here he explains how our image of the world has changed throughout centuries. Fom Aristotle to Albert Einstein, Michael Faraday to the Higgs boson, he takes us on a wondrous journey to show us that beyond our ever-changing idea of reality is a whole new world that has yet to be discovered.

The Accidental Universe: The World You Thought You Knew


Alan Lightman - 2013
    He looks at the difficult dialogue between science and religion; the conflict between our human desire for permanence and the impermanence of nature; the possibility that our universe is simply an accident; the manner in which modern technology has separated us from direct experience of the world; and our resistance to the view that our bodies and minds can be explained by scientific logic and laws. And behind all of these considerations is the suggestion—at once haunting and exhilarating—that what we see and understand of the world is only a tiny piece of the extraordinary, perhaps unfathomable whole.

Gravitational Waves: How Einstein’s Spacetime Ripples Reveal the Secrets of the Universe


Brian Clegg - 2018
    But gravitational waves – ripples in the fabric of space and time – are unrelenting, passing through barriers that stop light dead.At the two 4-kilometre long LIGO observatories in the US, scientists developed incredibly sensitive detectors, capable of spotting a movement 100 times smaller than the nucleus of an atom. In 2015 they spotted the ripples produced by two black holes spiralling into each other, setting spacetime quivering.This was the first time black holes had ever been directly detected – and it promises far more for the future of astronomy. Brian Clegg presents a compelling story of human technical endeavour and a new, powerful path to understand the workings of the universe.Brian Clegg’s most recent books are The Reality Frame (Icon, 2017), What Colour is the Sun? (Icon, 2016) and Ten Billion Tomorrows (St Martin’s Press, 2016). His Dice World and A Brief History of Infinity were both longlisted for the Royal Society Prize for Science Books. He has also written Big Data for the Hot Science series. Brian has written for numerous publications including The Wall Street Journal, Nature, BBC Focus, Physics World, The Times and The Observer. Brian is editor of popularscience.co.uk and blogs at brianclegg.blogspot.com.

Fundamental: How quantum and particle physics explain absolutely everything (except gravity)


Tim James - 2019
    In the quantum realm, objects can be in two places at once. It's a place where time travel is not only possible, but necessary. It's a place where cause and effect can happen in reverse and observing something changes its state. From parallel universes to antimatter, quantum mechanics has revealed that when you get right down to it, the laws of nature are insane. The scientist J. B. S. Haldane once said, 'Reality is not only stranger than we imagine . . . it's stranger than we can imagine.' Never is this more true than with quantum mechanics; our best, most recent attempt to make sense of the fundamental laws of nature.Fundamental is a comprehensive beginner's guide to quantum mechanics, explaining not only the weirdness of the subject but the experiments that proved it to be true. Using a humorous and light-hearted approach, Fundamental tells the story of how the most brilliant minds in science grappled with seemingly impossible ideas and gave us everything from microchips to particle accelerators. Fundamental gives clear explanations of all the quantum phenomena known to modern science, without requiring an understanding of complex mathematics; tells the eccentric stories of the scientists who made these shattering discoveries and what they used them for; explains how quantum field theory (a topic not covered in detail by any other popular-science book) gave rise to particle physics and why the Higgs boson isn't the end of the story.