Book picks similar to
Introduction to Natural Language Processing by Jacob Eisenstein
machine-learning
computer-science
nlp
artificial-intelligence
Land of LISP: Learn to Program in LISP, One Game at a Time!
Conrad Barski - 2010
Land of Lisp brings the language into the real world, teaching Lisp by showing readers how to write several complete Lisp-based games, including a text adventure, an evolution simulation, and a robot battle. While building these games, readers learn the core concepts of Lisp programming, such as data types, recursion, input/output, object-oriented programming, and macros. And thanks to the power of Lisp, the code is short. Rather than bogging things down with reference information that is easily found online, Land of Lisp focuses on using Lisp for real programming. The book is filled with the author Conrad Barski's famous Lisp cartoons, featuring the Lisp alien and other zany characters.
Functional Programming in Scala
Rúnar Bjarnason - 2013
As a result, functional code is easier to test and reuse, simpler to parallelize, and less prone to bugs. Scala is an emerging JVM language that offers strong support for FP. Its familiar syntax and transparent interoperability with existing Java libraries make Scala a great place to start learning FP.Functional Programming in Scala is a serious tutorial for programmers looking to learn FP and apply it to the everyday business of coding. The book guides readers from basic techniques to advanced topics in a logical, concise, and clear progression. In it, they'll find concrete examples and exercises that open up the world of functional programming.Purchase of the print book comes with an offer of a free PDF, ePub, and Kindle eBook from Manning. Also available is all code from the book.
Programming Erlang
Joe Armstrong - 2007
It's used worldwide by companies who need to produce reliable, efficient, and scalable applications. Invest in learning Erlang now.Moore's Law is the observation that the amount you can do on a single chip doubles every two years. But Moore's Law is taking a detour. Rather than producing faster and faster processors, companies such as Intel and AMD are producing multi-core devices: single chips containing two, four, or more processors. If your programs aren't concurrent, they'll only run on a single processor at a time. Your users will think that your code is slow.Erlang is a programming language designed for building highly parallel, distributed, fault-tolerant systems. It has been used commercially for many years to build massive fault-tolerated systems that run for years with minimal failures.Erlang programs run seamlessly on multi-core computers: this means your Erlang program should run a lot faster on a 4 core processor than on a single core processor, all without you having to change a line of code.Erlang combines ideas from the world of functional programming with techniques for building fault-tolerant systems to make a powerful language for building the massively parallel, networked applications of the future.This book presents Erlang and functional programming in the familiar Pragmatic style. And it's written by Joe Armstrong, one of the creators of Erlang.It includes example code you'll be able to build upon. In addition, the book contains the full source code for two interesting applications:A SHOUTcast server which you can use to stream music to every computer in your house, and a full-text indexing and search engine that can index gigabytes of data. Learn how to write programs that run on dozens or even hundreds of local and remote processors. See how to write robust applications that run even in the face of network and hardware failure, using the Erlang programming language.
Data Science For Dummies
Lillian Pierson - 2014
Data Science For Dummies is the perfect starting point for IT professionals and students interested in making sense of their organization’s massive data sets and applying their findings to real-world business scenarios. From uncovering rich data sources to managing large amounts of data within hardware and software limitations, ensuring consistency in reporting, merging various data sources, and beyond, you’ll develop the know-how you need to effectively interpret data and tell a story that can be understood by anyone in your organization. Provides a background in data science fundamentals before moving on to working with relational databases and unstructured data and preparing your data for analysis Details different data visualization techniques that can be used to showcase and summarize your data Explains both supervised and unsupervised machine learning, including regression, model validation, and clustering techniques Includes coverage of big data processing tools like MapReduce, Hadoop, Dremel, Storm, and Spark It’s a big, big data world out there – let Data Science For Dummies help you harness its power and gain a competitive edge for your organization.
Git Pocket Guide
Richard E. Silverman - 2013
It provides a compact, readable introduction to Git for new users, as well as a reference to common commands and procedures for those of you with Git experience.Written for Git version 1.8.2, this handy task-oriented guide is organized around the basic version control functions you need, such as making commits, fixing mistakes, merging, and searching history.Examine the state of your project at earlier points in timeLearn the basics of creating and making changes to a repositoryCreate branches so many people can work on a project simultaneouslyMerge branches and reconcile the changes among themClone an existing repository and share changes with push/pull commandsExamine and change your repository’s commit historyAccess remote repositories, using different network protocolsGet recipes for accomplishing a variety of common tasks