Book picks similar to
Computer Science Distilled: Learn the Art of Solving Computational Problems by Wladston Ferreira Filho
computer-science
programming
tech
it
Systems Performance: Enterprise and the Cloud
Brendan Gregg - 2013
Now, internationally renowned performance expert Brendan Gregg has brought together proven methodologies, tools, and metrics for analyzing and tuning even the most complex environments. Systems Performance: Enterprise and the Cloud focuses on Linux(R) and Unix(R) performance, while illuminating performance issues that are relevant to all operating systems. You'll gain deep insight into how systems work and perform, and learn methodologies for analyzing and improving system and application performance. Gregg presents examples from bare-metal systems and virtualized cloud tenants running Linux-based Ubuntu(R), Fedora(R), CentOS, and the illumos-based Joyent(R) SmartOS(TM) and OmniTI OmniOS(R). He systematically covers modern systems performance, including the "traditional" analysis of CPUs, memory, disks, and networks, and new areas including cloud computing and dynamic tracing. This book also helps you identify and fix the "unknown unknowns" of complex performance: bottlenecks that emerge from elements and interactions you were not aware of. The text concludes with a detailed case study, showing how a real cloud customer issue was analyzed from start to finish. Coverage includes - Modern performance analysis and tuning: terminology, concepts, models, methods, and techniques - Dynamic tracing techniques and tools, including examples of DTrace, SystemTap, and perf - Kernel internals: uncovering what the OS is doing - Using system observability tools, interfaces, and frameworks - Understanding and monitoring application performance - Optimizing CPUs: processors, cores, hardware threads, caches, interconnects, and kernel scheduling - Memory optimization: virtual memory, paging, swapping, memory architectures, busses, address spaces, and allocators - File system I/O, including caching - Storage devices/controllers, disk I/O workloads, RAID, and kernel I/O - Network-related performance issues: protocols, sockets, interfaces, and physical connections - Performance implications of OS and hardware-based virtualization, and new issues encountered with cloud computing - Benchmarking: getting accurate results and avoiding common mistakes This guide is indispensable for anyone who operates enterprise or cloud environments: system, network, database, and web admins; developers; and other professionals. For students and others new to optimization, it also provides exercises reflecting Gregg's extensive instructional experience.
The Problem with Software: Why Smart Engineers Write Bad Code
Adam Barr - 2018
As the size and complexity of commercial software have grown, the gap between academic computer science and industry has widened. It's an open secret that there is little engineering in software engineering, which continues to rely not on codified scientific knowledge but on intuition and experience.Barr, who worked as a programmer for more than twenty years, describes how the industry has evolved, from the era of mainframes and Fortran to today's embrace of the cloud. He explains bugs and why software has so many of them, and why today's interconnected computers offer fertile ground for viruses and worms. The difference between good and bad software can be a single line of code, and Barr includes code to illustrate the consequences of seemingly inconsequential choices by programmers. Looking to the future, Barr writes that the best prospect for improving software engineering is the move to the cloud. When software is a service and not a product, companies will have more incentive to make it good rather than "good enough to ship."
System Design Interview – An Insider's Guide
Alex Xu - 2020
This book provides a step-by-step framework on how to tackle a system design question. It includes many real-world examples to illustrate the systematic approach with detailed steps that you can follow.What’s inside?- An insider’s take on what interviewers really look for and why.- A 4-step framework for solving any system design interview question.- 15 real system design interview questions with detailed solutions.- 188 diagrams to visually explain how different systems work.Table Of ContentsChapter 1: Scale From Zero To Millions Of UsersChapter 2: Back-of-the-envelope EstimationChapter 3: A Framework For System Design InterviewsChapter 4: Design A Rate LimiterChapter 5: Design Consistent HashingChapter 6: Design A Key-value StoreChapter 7: Design A Unique Id Generator In Distributed SystemsChapter 8: Design A Url ShortenerChapter 9: Design A Web CrawlerChapter 10: Design A Notification SystemChapter 11: Design A News Feed SystemChapter 12: Design A Chat SystemChapter 13: Design A Search Autocomplete SystemChapter 14: Design YoutubeChapter 15: Design Google DriveChapter 16: The Learning Continues
Python Machine Learning
Sebastian Raschka - 2015
We are living in an age where data comes in abundance, and thanks to the self-learning algorithms from the field of machine learning, we can turn this data into knowledge. Automated speech recognition on our smart phones, web search engines, e-mail spam filters, the recommendation systems of our favorite movie streaming services – machine learning makes it all possible.Thanks to the many powerful open-source libraries that have been developed in recent years, machine learning is now right at our fingertips. Python provides the perfect environment to build machine learning systems productively.This book will teach you the fundamentals of machine learning and how to utilize these in real-world applications using Python. Step-by-step, you will expand your skill set with the best practices for transforming raw data into useful information, developing learning algorithms efficiently, and evaluating results.You will discover the different problem categories that machine learning can solve and explore how to classify objects, predict continuous outcomes with regression analysis, and find hidden structures in data via clustering. You will build your own machine learning system for sentiment analysis and finally, learn how to embed your model into a web app to share with the world