Book picks similar to
Deep Learning for Search by Tommaso Teofili
computer-science
machine-learning
ml
deep-learning
Functional-Light JavaScript: Pragmatic, Balanced FP in JavaScript
Kyle Simpson - 2017
Functional Programming (FP) is an incredibly powerful paradigm for structuring code that yields more robust, verifiable, and readable programs. If you've ever tried to learn FP but struggled with terms like "monad", mathematical concepts like category theory, or symbols like λ, you're not alone. Functional-Light programming distills the most vital aspects of FP—function purity, value immutability, composition, and more!—down to approachable JavaScript patterns. Rather than the all-or-nothing dogmatism often encountered in FP, this book teaches you how to improve your programs line by line.
Machine Learning for Absolute Beginners
Oliver Theobald - 2017
The manner in which computers are now able to mimic human thinking is rapidly exceeding human capabilities in everything from chess to picking the winner of a song contest. In the age of machine learning, computers do not strictly need to receive an ‘input command’ to perform a task, but rather ‘input data’. From the input of data they are able to form their own decisions and take actions virtually as a human would. But as a machine, can consider many more scenarios and execute calculations to solve complex problems. This is the element that excites companies and budding machine learning engineers the most. The ability to solve complex problems never before attempted. This is also perhaps one reason why you are looking at purchasing this book, to gain a beginner's introduction to machine learning. This book provides a plain English introduction to the following topics: - Artificial Intelligence - Big Data - Downloading Free Datasets - Regression - Support Vector Machine Algorithms - Deep Learning/Neural Networks - Data Reduction - Clustering - Association Analysis - Decision Trees - Recommenders - Machine Learning Careers This book has recently been updated following feedback from readers. Version II now includes: - New Chapter: Decision Trees - Cleanup of minor errors
The Way to Go: A Thorough Introduction to the Go Programming Language
Ivo Balbaert - 2012
"
Superintelligence: Paths, Dangers, Strategies
Nick Bostrom - 2014
The human brain has some capabilities that the brains of other animals lack. It is to these distinctive capabilities that our species owes its dominant position. If machine brains surpassed human brains in general intelligence, then this new superintelligence could become extremely powerful--possibly beyond our control. As the fate of the gorillas now depends more on humans than on the species itself, so would the fate of humankind depend on the actions of the machine superintelligence.But we have one advantage: we get to make the first move. Will it be possible to construct a seed Artificial Intelligence, to engineer initial conditions so as to make an intelligence explosion survivable? How could one achieve a controlled detonation?
Kubernetes Patterns: Reusable Elements for Designing Cloud-Native Applications
Bilgin Ibryam - 2019
These modern architectures use new primitives that require a different set of practices than most developers, tech leads, and architects are accustomed to. With this focused guide, Bilgin Ibryam and Roland Huß from Red Hat provide common reusable elements, patterns, principles, and practices for designing and implementing cloud-native applications on Kubernetes.Each pattern includes a description of the problem and a proposed solution with Kubernetes specifics. Many patterns are also backed by concrete code examples. This book is ideal for developers already familiar with basic Kubernetes concepts who want to learn common cloud-native patterns.You'll learn about the following pattern categories:Foundational patterns cover the core principles and practices for building container-based cloud-native applications.Behavioral patterns explore finer-grained concepts for managing various types of container and platform interactions.Structural patterns help you organize containers within a pod, the atom of the Kubernetes platform.Configuration patterns provide insight into how application configurations can be handled in Kubernetes.Advanced patterns cover more advanced topics such as extending the platform with operators.
Advances in Financial Machine Learning
Marcos López de Prado - 2018
Today, ML algorithms accomplish tasks that - until recently - only expert humans could perform. And finance is ripe for disruptive innovations that will transform how the following generations understand money and invest.In the book, readers will learn how to:Structure big data in a way that is amenable to ML algorithms Conduct research with ML algorithms on big data Use supercomputing methods and back test their discoveries while avoiding false positives Advances in Financial Machine Learning addresses real life problems faced by practitioners every day, and explains scientifically sound solutions using math, supported by code and examples. Readers become active users who can test the proposed solutions in their individual setting.Written by a recognized expert and portfolio manager, this book will equip investment professionals with the groundbreaking tools needed to succeed in modern finance.
Machine Learning Yearning
Andrew Ng
But building a machine learning system requires that you make practical decisions: Should you collect more training data? Should you use end-to-end deep learning? How do you deal with your training set not matching your test set? and many more. Historically, the only way to learn how to make these "strategy" decisions has been a multi-year apprenticeship in a graduate program or company. This is a book to help you quickly gain this skill, so that you can become better at building AI systems.
Building Mobile Apps at Scale: 39 Engineering Challenges
Gergely Orosz - 2021
By scale, we mean having numbers of users in the millions and being built by large engineering teams.For mobile engineers, this book is a blueprint for modern app engineering approaches. For non-mobile engineers and managers, it is a resource with which to build empathy and appreciation for the complexity of world-class mobile engineering.
RHCE Red Hat Certified Engineer Linux Study Guide: Exam (RH302)
Michael Jang - 2002
100% complete coverage of all objectives for exam RH302 Exam Readiness Checklist at the front of the book--you're ready for the exam when all objectives on the list are checked off Inside the Exam sections in every chapter highlight key exam topics covered Real-world exercises modeled after hands-on exam scenarios Two complete lab-based exams simulate the format, tone, topics, and difficulty of the real exam Bonus content (available for download) includes installation screen review, basic instructions for using VMware and Xen as testbeds, and paper and pencil versions of the lab exams Covers all RH302 exam topics, including: Hardware installation and configuration The boot process Linux filesystem administration Package management and Kickstart User and group administration System administration tools Kernel services and configuration Apache and Squid Network file sharing services (NFS, FTP, and Samba) Domain Name System (DNS) E-mail (servers and clients) Extended Internet Services Daemon (xinetd), the Secure package, and DHCP The X Window System Firewalls, SELinux, and troubleshooting
How to Prove It: A Structured Approach
Daniel J. Velleman - 1994
The book begins with the basic concepts of logic and set theory, to familiarize students with the language of mathematics and how it is interpreted. These concepts are used as the basis for a step-by-step breakdown of the most important techniques used in constructing proofs. To help students construct their own proofs, this new edition contains over 200 new exercises, selected solutions, and an introduction to Proof Designer software. No background beyond standard high school mathematics is assumed. Previous Edition Hb (1994) 0-521-44116-1 Previous Edition Pb (1994) 0-521-44663-5
R for Data Science: Import, Tidy, Transform, Visualize, and Model Data
Hadley Wickham - 2016
This book introduces you to R, RStudio, and the tidyverse, a collection of R packages designed to work together to make data science fast, fluent, and fun. Suitable for readers with no previous programming experience, R for Data Science is designed to get you doing data science as quickly as possible.
Authors Hadley Wickham and Garrett Grolemund guide you through the steps of importing, wrangling, exploring, and modeling your data and communicating the results. You’ll get a complete, big-picture understanding of the data science cycle, along with basic tools you need to manage the details. Each section of the book is paired with exercises to help you practice what you’ve learned along the way.
You’ll learn how to:
Wrangle—transform your datasets into a form convenient for analysis
Program—learn powerful R tools for solving data problems with greater clarity and ease
Explore—examine your data, generate hypotheses, and quickly test them
Model—provide a low-dimensional summary that captures true "signals" in your dataset
Communicate—learn R Markdown for integrating prose, code, and results
Python: Programming: Your Step By Step Guide To Easily Learn Python in 7 Days (Python for Beginners, Python Programming for Beginners, Learn Python, Python Language)
iCode Academy - 2017
Are You Ready To Learn Python Easily? Learning Python Programming in 7 days is possible, although it might not look like it
Explain the Cloud Like I'm 10
Todd Hoff - 2018
And I mean all the time. Every day there’s a new cloud-based dating app; a new cloud-based gizmo for your house; a new cloud-based game; or a thousand other new things—all in the cloud.The cloud is everywhere! Everything is in the cloud! What does it mean! Let’s slow down. Take a deep breath. That’s good. Take another. Excellent. This book teaches you all about the cloud. I’ll let you in on a little secret: the cloud is not that hard to understand. It’s not. It’s just that nobody has taken the time to explain to you what the cloud is. They haven’t, have they?Deep down I think this is because they don’t understand the cloud either, but I do. I’ve been a programmer and writer for over 30 years. I’ve been in cloud computing since the very start, and I’m here to help you on your journey to understand the cloud. Consider me your tour guide. I’ll be with you every step of the way, but not in a creepy way.I take my time with this book. I go slow and easy, so you can build up an intuition about what the cloud really is, one idea at a time. When you finish reading, you’ll understand the cloud. When you hear someone say some new cool thing is in the cloud, you’ll understand exactly what they mean. That’s a promise. How do I deliver on that promise? I use lots and lots of pictures. I use lots and lots of examples. We’ll reveal the secret inner-workings of AWS, Netflix, Facebook Messenger, Amazon Kindle, Apple iCloud, Google Maps, Nest and cloud DVRs. You’ll learn by seeing and understanding; no matter if you're a complete beginner, someone who knows a little and wants to learn more, or a programmer looking to change their career to the cloud.The cloud is the future. You don't want to miss out on the future, do you? Read this book and we'll discover it together.I’m excited. This will be fun. Let’s get started!
The Design of Everyday Things
Donald A. Norman - 1988
It could forever change how you experience and interact with your physical surroundings, open your eyes to the perversity of bad design and the desirability of good design, and raise your expectations about how things should be designed.B & W photographs and illustrations throughout.
The Art of Statistics: How to Learn from Data
David Spiegelhalter - 2019
Statistics are everywhere, as integral to science as they are to business, and in the popular media hundreds of times a day. In this age of big data, a basic grasp of statistical literacy is more important than ever if we want to separate the fact from the fiction, the ostentatious embellishments from the raw evidence -- and even more so if we hope to participate in the future, rather than being simple bystanders. In The Art of Statistics, world-renowned statistician David Spiegelhalter shows readers how to derive knowledge from raw data by focusing on the concepts and connections behind the math. Drawing on real world examples to introduce complex issues, he shows us how statistics can help us determine the luckiest passenger on the Titanic, whether a notorious serial killer could have been caught earlier, and if screening for ovarian cancer is beneficial. The Art of Statistics not only shows us how mathematicians have used statistical science to solve these problems -- it teaches us how we too can think like statisticians. We learn how to clarify our questions, assumptions, and expectations when approaching a problem, and -- perhaps even more importantly -- we learn how to responsibly interpret the answers we receive. Combining the incomparable insight of an expert with the playful enthusiasm of an aficionado, The Art of Statistics is the definitive guide to stats that every modern person needs.