Book picks similar to
Partial Differential Equations of Mathematical Physics and Integral Equations by Ronald B. Guenther
mathematics
bookshelf
collections
numerical-analysis
Karl, the Universe and Everything
Karl Kruszelnicki - 2017
Learn about Dr Karl, the universe and everything, and discover how air-conditioning is sexist, how you can kill a spinning hard drive by shouting at it and how space junk is threatening our future capabilities for space travel.Could there be life on one of Saturn's moons? How much power could you collect from all the lightning on Earth? Why do books have book-smell? Why is 10 per cent of the Earth's land area prone to sinkholes?Why are some people chronically late? What would happen if the Earth stopped spinning? Why do most people hardly remember anything from the first half-a-dozen years of their life?How close are we to the Artificial Uterus? Why do some songs turn into "earworms" and stick inside your brain? Why does your hotel room access card get wiped so easily?And is your home WiFi really spying on you?
The End of Medicine: How Silicon Valley (and Naked Mice) Will Reboot Your Doctor
Andy Kessler - 2006
Too bad. Because medicine isn't an industry, it's practically witchcraft. Despite the growth of big pharma, HMOs, and hospital chains, medicine remains the isolated work of individual doctors—and the system is going broke fast.So why is Andy Kessler—the man who told you outrageous stories of Wall Street analysts gone bad in Wall Street Meat and tales from inside a hedge fund in Running Money—poking around medicine for the next big wave of technology?It's because he smells change coming. Heart attacks, strokes, and cancer are a huge chunk of medical spending, yet there's surprisingly little effort to detect disease before it's life threatening. How lame is that—especially since the technology exists today to create computer-generated maps of your heart and colon?Because it's too expensive—for now. But Silicon Valley has turned computing, telecom, finance, music, and media upside down by taking expensive new technologies and making them ridiculously cheap. So why not the $1.8 trillion health care business, where the easiest way to save money is to stop folks from getting sick in the first place?Join Kessler's bizarre search for the next big breakthrough as he tries to keep from passing out while following cardiologists around, cracks jokes while reading mammograms, and watches twitching mice get injected with radioactive probes. Looking for a breakthrough, Kessler even selflessly pokes, scans, and prods himself.CT scans of your heart will identify problems before you have a heart attack or stroke; a nanochip will search your blood for cancer cells--five years before they grow uncontrollably and kill you; and baby boomers can breathe a little easier because it's all starting to happen now.Your doctor can't be certain what's going on inside your body, but technology will. Embedding the knowledge of doctors in silicon will bring a breakout technology to health care, and we will soon see an end of medicine as we know it.
A World Without Time: The Forgotten Legacy of Gödel And Einstein
Palle Yourgrau - 2004
By 1949, Godel had produced a remarkable proof: In any universe described by the Theory of Relativity, time cannot exist. Einstein endorsed this result reluctantly but he could find no way to refute it, since then, neither has anyone else. Yet cosmologists and philosophers alike have proceeded as if this discovery was never made. In A World Without Time, Palle Yourgrau sets out to restore Godel to his rightful place in history, telling the story of two magnificent minds put on the shelf by the scientific fashions of their day, and attempts to rescue the brilliant work they did together.
Hacking Matter: Levitating Chairs, Quantum Mirages, And The Infinite Weirdness Of Programmable Atoms
Wil McCarthy - 2003
But it's coming, and when it does, it will change our lives as much as any invention ever has. Imagine being able to program matter itself-to change it, with the click of a cursor, from hard to soft, from paper to stone, from fluorescent to super-reflective to invisible. Supported by organizations ranging from Levi Strauss and IBM to the Defense Department, solid-state physicists in renowned laboratories are working to make it a reality. In this dazzling investigation, Wil McCarthy visits the laboratories and talks with the researchers who are developing this extraordinary technology, describes how they are learning to control it, and tells us where all this will lead. The possibilities are truly astonishing.
How to Think About Analysis
Lara Alcock - 2014
It is elegant, clever and rewarding to learn, but it is hard. Even the best students find it challenging, and those who are unprepared often find it incomprehensible at first. This book aims to ensure that no student need be unprepared. It is not like other Analysis books. It is not a textbook containing standard content. Rather, it is designed to be read before arriving at university and/or before starting an Analysis course, or as a companion text once a course is begun. It provides a friendly and readable introduction to the subject by building on the students existing understanding of six key topics: sequences, series, continuity, differentiability, integrability and the real numbers. It explains how mathematicians develop and use sophisticated formal versions of these ideas, and provides a detailed introduction to the central definitions, theorems and proofs, pointing out typical areas of difficulty and confusion and explaining how to overcome these. The book also provides study advice focused on the skills that students need if they are to build on this introduction and learn successfully in their own Analysis courses: it explains how to understand definitions, theorems and proofs by relating them to examples and diagrams, how to think productively about proofs, and how theories are taught in lectures and books on advanced mathematics. It also offers practical guidance on strategies for effective study planning. The advice throughout is research-based and is presented in an engaging style that will be accessible to students who are new to advanced abstract mathematics.
How to Count to Infinity
Marcus du Sautoy - 2020
But this book will help you to do something that humans have only recently understood how to do: to count to regions that no animal has ever reached.
By the end of this book you'll be able to count to infinity... and beyond.
On our way to infinity we'll discover how the ancient Babylonians used their bodies to count to 60 (which gave us 60 minutes in the hour), how the number zero was only discovered in the 7th century by Indian mathematicians contemplating the void, why in China going into the red meant your numbers had gone negative and why numbers might be our best language for communicating with alien life.But for millennia, contemplating infinity has sent even the greatest minds into a spin. Then at the end of the nineteenth century mathematicians discovered a way to think about infinity that revealed that it is a number that we can count. Not only that. They found that there are an infinite number of infinities, some bigger than others. Just using the finite neurons in your brain and the finite pages in this book, you'll have your mind blown discovering the secret of how to count to infinity.Do something amazing and learn a new skill thanks to the Little Ways to Live a Big Life books!
Computational Complexity
Sanjeev Arora - 2007
Requiring essentially no background apart from mathematical maturity, the book can be used as a reference for self-study for anyone interested in complexity, including physicists, mathematicians, and other scientists, as well as a textbook for a variety of courses and seminars. More than 300 exercises are included with a selected hint set.
On Gravity: A Brief Tour of a Weighty Subject
Anthony Zee - 2018
From the months each of us spent suspended in the womb anticipating birth to the moments when we wait for sleep to transport us to other realities, we are always aware of gravity. In On Gravity, physicist A. Zee combines profound depth with incisive accessibility to take us on an original and compelling tour of Einstein's general theory of relativity.Inspired by Einstein's audacious suggestion that spacetime could ripple, Zee begins with the stunning discovery of gravity waves. He goes on to explain how gravity can be understood in comparison to other classical field theories, presents the idea of curved spacetime and the action principle, and explores cutting-edge topics, including black holes and Hawking radiation. Zee travels as far as the theory reaches, leaving us with tantalizing hints of the utterly unknown, from the intransigence of quantum gravity to the mysteries of dark matter and energy.Concise and precise, and infused with Zee's signature warmth and freshness of style, On Gravity opens a unique pathway to comprehending relativity and gaining deep insight into gravity, spacetime, and the workings of the universe.
Number Theory
George E. Andrews - 1994
In studying number theory from such a perspective, mathematics majors are spared repetition and provided with new insights, while other students benefit from the consequent simplicity of the proofs for many theorems.Among the topics covered in this accessible, carefully designed introduction are multiplicativity-divisibility, including the fundamental theorem of arithmetic, combinatorial and computational number theory, congruences, arithmetic functions, primitive roots and prime numbers. Later chapters offer lucid treatments of quadratic congruences, additivity (including partition theory) and geometric number theory.Of particular importance in this text is the author's emphasis on the value of numerical examples in number theory and the role of computers in obtaining such examples. Exercises provide opportunities for constructing numerical tables with or without a computer. Students can then derive conjectures from such numerical tables, after which relevant theorems will seem natural and well-motivated..
The Shape of a Life: One Mathematician's Search for the Universe's Hidden Geometry
Shing-Tung Yau - 2019
“An unexpectedly intimate look into a highly accomplished man, his colleagues and friends, the development of a new field of geometric analysis, and a glimpse into a truly uncommon mind.”—Nina MacLaughlin,
Boston Globe
“Engaging, eminently readable . . . For those with a taste for elegant and largely jargon-free explanations of mathematics, The Shape of a Life promises hours of rewarding reading.”—Judith Goodstein, American Scientist Harvard geometer and Fields medalist Shing-Tung Yau has provided a mathematical foundation for string theory, offered new insights into black holes, and mathematically demonstrated the stability of our universe. In this autobiography, Yau reflects on his improbable journey to becoming one of the world’s most distinguished mathematicians. Beginning with an impoverished childhood in China and Hong Kong, Yau takes readers through his doctoral studies at Berkeley during the height of the Vietnam War protests, his Fields Medal–winning proof of the Calabi conjecture, his return to China, and his pioneering work in geometric analysis. This new branch of geometry, which Yau built up with his friends and colleagues, has paved the way for solutions to several important and previously intransigent problems. With complicated ideas explained for a broad audience, this book offers readers not only insights into the life of an eminent mathematician, but also an accessible way to understand advanced and highly abstract concepts in mathematics and theoretical physics.
Elementary Number Theory
David M. Burton - 1976
It reveals the attraction that has drawn leading mathematicians and amateurs alike to number theory over the course of history.
Challenge And Thrill Of Pre College Mathematics
V. Krishnamurthy - 2009
It can urge the reader to explore new methodologies to have maximum fun with numbers, and opt for a higher course in mathematics. The book was specifically designed to help the student community, and develop a strong affinity towards problem solving.the book offers many complicated, and interesting challenges for the user, keeping them engaged throughout. A large number of solved problems are also included in challenge and thrill of pre-college mathematics, to give readers an insight into the subject. The book can be an eye-opener for school students of class 7 and above. The materials given in the book are powerful enough to help them develop a strong interest for the subject. The concepts are explained in a simple and comprehensive manner, providing them with a good understanding of mathematical fundamentals.what makes the book distinct is its detailed sections on geometry, that can improve the reasoning skills of students. There are also detailed accounts on algebra and trigonometry, enhancing the competitive ability of the users. The topics such as combinatorics, number theory, and probability are also explained in detail, in the book. Each chapter was designed with the intention of motivating students to appreciate the excitement that mathematical problems can provide. Published in 2003 by new age international publishers, the book is available in paperback. Key features: the book includes a collection of more than 300 solved numerical problems, compiled from various national, as well as international mathematical olympiads.it is widely recommended by students and teachers, alike as an essential preparatory book for those writing competitive examinations.
The Theory of Everything: The Quest to Explain All Reality
Don Lincoln - 2018
He was trying to find an equation that explained all physical reality - a theory of everything. He failed, but others have taken up the challenge in a remarkable quest that is shedding light on unsuspected secrets of the cosmos.Experimental physicist and award-winning educator Dr. Don Lincoln of the Fermi National Accelerator Laboratory takes you on this exciting journey in The Theory of Everything: The Quest to Explain All Reality. Suitable for the intellectually curious at all levels and assuming no background beyond basic high-school math, these 24 half-hour lectures cover recent developments at the forefront of particle physics and cosmology, while delving into the history of the centuries-long search for this holy grail of science.You trace the dream of a theory of everything through Newton, Maxwell, Einstein, Bohr, Schrödinger, Feynman, Gell-Mann, Weinberg, and other great physicists, charting their progress toward an all-embracing, unifying theory. Their resulting equations are the masterpieces of physics, which Dr. Lincoln explains in fascinating and accessible detail. Studying them is like touring a museum of great works of art - works that are progressing toward an ultimate, as-yet-unfinished masterpiece.Listening Length: 12 hours and 21 minutes
The Fabulous Fibonacci Numbers
Alfred S. Posamentier - 2007
In this simple pattern beginning with two ones, each succeeding number is the sum of the two numbers immediately preceding it (1, 1, 2, 3, 5, 8, 13, 21, ad infinitum). Far from being just a curiosity, this sequence recurs in structures found throughout nature - from the arrangement of whorls on a pinecone to the branches of certain plant stems. All of which is astounding evidence for the deep mathematical basis of the natural world. With admirable clarity, two veteran math educators take us on a fascinating tour of the many ramifications of the Fibonacci numbers. They begin with a brief history of a distinguished Italian discoverer, who, among other accomplishments, was responsible for popularizing the use of Arabic numerals in the West. Turning to botany, the authors demonstrate, through illustrative diagrams, the unbelievable connections between Fibonacci numbers and natural forms (pineapples, sunflowers, and daisies are just a few examples). In art, architecture, the stock market, and other areas of society and culture, they point out numerous examples of the Fibonacci sequence as well as its derivative, the "golden ratio." And of course in mathematics, as the authors amply demonstrate, there are almost boundless applications in probability, number theory, geometry, algebra, and Pascal's triangle, to name a few.Accessible and appealing to even the most math-phobic individual, this fun and enlightening book allows the reader to appreciate the elegance of mathematics and its amazing applications in both natural and cultural settings.
Chance: A Guide to Gambling, Love, the Stock Market, and Just About Everything Else
Amir D. Aczel - 2003
Aczel turns his sights on probability theory -- the branch of mathematics that measures the likelihood of a random event. He explains probability in clear, layman's terms, and shows its practical applications. What is commonly called luck has mathematical roots and in Chance, you'll learn to increase your odds of success in everything from true love to the stock market. For thousands of years, the twin forces of chance and mischance have beguiled humanity like none other. Why does fortune smile on some people, and smirk on others? What is luck, and why does it so often visit the undeserving? How can we predict the random events happening around us? Even better, how can we manipulate them? In this delightful and lucid voyage through the realm of the random, Dr. Aczel once again makes higher mathematics intelligible to us.