Lost in Math: How Beauty Leads Physics Astray


Sabine Hossenfelder - 2018
    Whether pondering black holes or predicting discoveries at CERN, physicists believe the best theories are beautiful, natural, and elegant, and this standard separates popular theories from disposable ones. This is why, Sabine Hossenfelder argues, we have not seen a major breakthrough in the foundations of physics for more than four decades. The belief in beauty has become so dogmatic that it now conflicts with scientific objectivity: observation has been unable to confirm mindboggling theories, like supersymmetry or grand unification, invented by physicists based on aesthetic criteria. Worse, these "too good to not be true" theories are actually untestable and they have left the field in a cul-de-sac. To escape, physicists must rethink their methods. Only by embracing reality as it is can science discover the truth.

Nothing: From Absolute Zero to Cosmic Oblivion - Amazing Insights into Nothingness


Jeremy Webb - 2013
    It's all too easy to ignore the fascinating possibilities of emptiness and non-existence, and we may well wonder what there is to say about nothing. But scientists have known for centuries that nothing is the key to understanding absolutely everything, from why particles have mass to the expansion of the universe - so without nothing we'd be precisely nowhere.Absolute zero (the coldest cold that can exist) and the astonishing power of placebos, light bulbs, superconductors, vacuums, dark energy, 'bed rest' and the birth of time - all are different aspects of the concept of nothing. The closer we look, the bigger the subject gets. Why do some animals spend all day doing nothing? What happens in our brains when we try to think about nothing? With chapters by 20 science writers, including top names such as Ian Stewart, Marcus Chown, Nigel Henbest, Michael Brooks, Paul Davies and David Fisher, this fascinating and intriguing book revels in a subject that has tantalised the finest minds for centuries, and shows there's more to nothing than meets the eye.

What Is This Thing Called Science?


Alan F. Chalmers - 1976
    Of particular importance is the examination of Bayesianism and the new experimentalism, as well as new chapters on the nature of scientific laws and recent trends in the realism versus anti-realism debate."Crisp, lucid and studded with telling examples… As a handy guide to recent alarums and excursions (in the philosophy of science) I find this book vigorous, gallant and useful."New Scientist

Germs, Genes, & Civilization: How Epidemics Shaped Who We Are Today


David P. Clark - 2004
    No one can stop him--but he walks away. A miracle? No...dysentery. Microbes saved the Roman Empire. Nearly a millennium later, the microbes of the Black Death ended the Middle Ages, making possible the Renaissance, western democracy, and the scientific revolution. Soon after, microbes ravaged the Americas, paving the way for their European conquest. Again and again, microbes have shaped our health, our genetics, our history, our culture, our politics, even our religion and ethics. This book reveals much that scientists and cultural historians have learned about the pervasive interconnections between infectious microbes and humans. It also considers what our ongoing fundamental relationship with infectious microbes might mean for the future of the human species. The "good side" of history's worst epidemics The surprising debt we owe to killer diseases Where diseases came from... ...and where they may be going Children of pestilence: disease and civilization From Egypt to Mexico, the Romans to Attila the Hun STDs, sexual behavior, and culture How microbes may shape cultural cycles of puritanism and promiscuity

The Quantum Universe: Everything That Can Happen Does Happen


Brian Cox - 2011
    Cox and Forshaw's contention? There is no need for quantum mechanics to be viewed this way. There is a lot of mileage in the 'weirdness' of the quantum world, and it often leads to confusion and, frankly, bad science. The Quantum Universe cuts through the Wu Li and asks what observations of the natural world made it necessary, how it was constructed, and why we are confident that, for all its apparent strangeness, it is a good theory.The quantum mechanics of The Quantum Universe provide a concrete model of nature that is comparable in its essence to Newton’s laws of motion, Maxwell’s theory of electricity and magnetism, and Einstein’s theory of relativity.

The Nothing That Is: A Natural History of Zero


Robert M. Kaplan - 1999
    As we enter the year 2000, zero is once again making its presence felt. Nothing itself, it makes possible a myriad of calculations. Indeed, without zero mathematicsas we know it would not exist. And without mathematics our understanding of the universe would be vastly impoverished. But where did this nothing, this hollow circle, come from? Who created it? And what, exactly, does it mean? Robert Kaplan's The Nothing That Is: A Natural History of Zero begins as a mystery story, taking us back to Sumerian times, and then to Greece and India, piecing together the way the idea of a symbol for nothing evolved. Kaplan shows us just how handicapped our ancestors were in trying to figurelarge sums without the aid of the zero. (Try multiplying CLXIV by XXIV). Remarkably, even the Greeks, mathematically brilliant as they were, didn't have a zero--or did they? We follow the trail to the East where, a millennium or two ago, Indian mathematicians took another crucial step. By treatingzero for the first time like any other number, instead of a unique symbol, they allowed huge new leaps forward in computation, and also in our understanding of how mathematics itself works. In the Middle Ages, this mathematical knowledge swept across western Europe via Arab traders. At first it was called dangerous Saracen magic and considered the Devil's work, but it wasn't long before merchants and bankers saw how handy this magic was, and used it to develop tools likedouble-entry bookkeeping. Zero quickly became an essential part of increasingly sophisticated equations, and with the invention of calculus, one could say it was a linchpin of the scientific revolution. And now even deeper layers of this thing that is nothing are coming to light: our computers speakonly in zeros and ones, and modern mathematics shows that zero alone can be made to generate everything.Robert Kaplan serves up all this history with immense zest and humor; his writing is full of anecdotes and asides, and quotations from Shakespeare to Wallace Stevens extend the book's context far beyond the scope of scientific specialists. For Kaplan, the history of zero is a lens for looking notonly into the evolution of mathematics but into very nature of human thought. He points out how the history of mathematics is a process of recursive abstraction: how once a symbol is created to represent an idea, that symbol itself gives rise to new operations that in turn lead to new ideas. Thebeauty of mathematics is that even though we invent it, we seem to be discovering something that already exists.The joy of that discovery shines from Kaplan's pages, as he ranges from Archimedes to Einstein, making fascinating connections between mathematical insights from every age and culture. A tour de force of science history, The Nothing That Is takes us through the hollow circle that leads to infinity.

Bad Science


Ben Goldacre - 2008
    When Dr Ben Goldacre saw someone on daytime TV dipping her feet in an 'Aqua Detox' footbath, releasing her toxins into the water, turning it brown, he thought he'd try the same at home. 'Like some kind of Johnny Ball cum Witchfinder General', using his girlfriend's Barbie doll, he gently passed an electrical current through the warm salt water. It turned brown. In his words: 'before my very eyes, the world's first Detox Barbie was sat, with her feet in a pool of brown sludge, purged of a weekend's immorality.' Dr Ben Goldacre is the author of the Bad Science column in the Guardian. His book is about all the 'bad science' we are constantly bombarded with in the media and in advertising. At a time when science is used to prove everything and nothing, everyone has their own 'bad science' moments from the useless pie-chart on the back of cereal packets to the use of the word 'visibly' in cosmetics ads.

Neanderthal Man: In Search of Lost Genomes


Svante Pääbo - 2014
    Beginning with the study of DNA in Egyptian mummies in the early 1980s and culminating in the sequencing of the Neanderthal genome in 2010, Neanderthal Man describes the events, intrigues, failures, and triumphs of these scientifically rich years through the lens of the pioneer and inventor of the field of ancient DNA.We learn that Neanderthal genes offer a unique window into the lives of our hominin relatives and may hold the key to unlocking the mystery of why humans survived while Neanderthals went extinct. Drawing on genetic and fossil clues, Pääbo explores what is known about the origin of modern humans and their relationship to the Neanderthals and describes the fierce debate surrounding the nature of the two species’ interactions. His findings have not only redrawn our family tree, but recast the fundamentals of human history—the biological beginnings of fully modern Homo sapiens, the direct ancestors of all people alive today.A riveting story about a visionary researcher and the nature of scientific inquiry, Neanderthal Man offers rich insight into the fundamental question of who we are.

The Clockwork Universe: Isaac Newton, the Royal Society, and the Birth of the Modern World


Edward Dolnick - 2011
    A meld of history and science, this book is a group portrait of some of the greatest minds who ever lived as they wrestled with nature’s most sweeping mysteries. The answers they uncovered still hold the key to how we understand the world.At the end of the seventeenth century—an age of religious wars, plague, and the Great Fire of London—when most people saw the world as falling apart, these earliest scientists saw a world of perfect order. They declared that, chaotic as it looked, the universe was in fact as intricate and perfectly regulated as a clock. This was the tail end of Shakespeare’s century, when the natural land the supernatural still twined around each other. Disease was a punishment ordained by God, astronomy had not yet broken free from astrology, and the sky was filled with omens. It was a time when little was known and everything was new. These brilliant, ambitious, curious men believed in angels, alchemy, and the devil, and they also believed that the universe followed precise, mathematical laws—-a contradiction that tormented them and changed the course of history.The Clockwork Universe is the fascinating and compelling story of the bewildered geniuses of the Royal Society, the men who made the modern world.

The Canon: A Whirligig Tour of the Beautiful Basics of Science


Natalie Angier - 2007
    She draws on conversations with hundreds of the world's top scientists and on her own work as a Pulitzer Prize-winning writer for the New York Times to create a thoroughly entertaining guide to scientific literacy. Angier's gifts are on full display in The Canon, an ebullient celebration of science that stands to become a classic. The Canon is vital reading for anyone who wants to understand the great issues of our time -- from stem cells and bird flu to evolution and global warming. And it's for every parent who has ever panicked when a child asked how the earth was formed or what electricity is. Angier's sparkling prose and memorable metaphors bring the science to life, reigniting our own childhood delight in discovering how the world works. "Of course you should know about science," writes Angier, "for the same reason Dr. Seuss counsels his readers to sing with a Ying or play Ring the Gack: These things are fun and fun is good." The Canon is a joyride through the major scientific disciplines: physics, chemistry, biology, geology, and astronomy. Along the way, we learn what is actually happening when our ice cream melts or our coffee gets cold, what our liver cells do when we eat a caramel, why the horse is an example of evolution at work, and how we're all really made of stardust. It's Lewis Carroll meets Lewis Thomas -- a book that will enrapture, inspire, and enlighten.

A Most Elegant Equation: Euler's Formula and the Beauty of Mathematics


David Stipp - 2017
    More than two centuries after Euler's death, it is still regarded as a conceptual diamond of unsurpassed beauty. Called Euler's identity or God's equation, it includes just five numbers but represents an astonishing revelation of hidden connections. It ties together everything from basic arithmetic to compound interest, the circumference of a circle, trigonometry, calculus, and even infinity. In David Stipp's hands, Euler's identity formula becomes a contemplative stroll through the glories of mathematics. The result is an ode to this magical field.

Fads and Fallacies in the Name of Science


Martin Gardner - 1952
    Not just a collection of anecdotes but a fair, reasoned appraisal of eccentric theory, it is unique in recognizing the scientific, philosophic, and sociological-psychological implications of the wave of pseudoscientific theories which periodically besets the world.To this second revised edition of a work formerly titled In the Name of Science, Martin Gardner has added new, up-to-date material to an already impressive account of hundreds of systematized vagaries. Here you will find discussions of hollow-earth fanatics like Symmes; Velikovsky and wandering planets; Hörbiger, Bellamy, and the theory of multiple moons; Charles Fort and the Fortean Society; dowsing and the other strange methods for finding water, ores, and oil. Also covered are such topics as naturopathy, iridiagnosis, zone therapy, food fads; Wilhelm Reich and orgone sex energy; L. Ron Hubbard and Dianetics; A. Korzybski and General Semantics. A new examination of Bridey Murphy is included in this edition, along with a new section on bibliographic reference material.

The Seashell on the Mountaintop: A Story of Science, Sainthood, and the Humble Genius who Discovered a New History of the Earth


Alan Cutler - 2003
     It was an ancient puzzle that stymied history's greatest minds: How did the fossils of seashells find their way far inland, sometimes high up into the mountains? Fossils only made sense in a world old enough to form them, and in the seventeenth century, few people could imagine such a thing. Texts no less authoritative than the Old Testament laid out very clearly the timescale of Earth's past; in fact one Anglican archbishop went so far as to calculate the exact date of Creation...October 23, 4004, B.C. A revolution was in the making, however, and it was started by the brilliant and enigmatic Nicholas Steno, the man whom Stephen Jay Gould called "the founder of geology." Steno explored beyond the pages of the Bible, looking directly at the clues left in the layers of the Earth. With his groundbreaking answer to the fossil question, Steno would not only confound the religious and scientific thinking of his own time, he would set the stage for the modern science that came after him. He would open the door to the concept of "deep time," which imagined a world with a history of millions or billions of years. And at the very moment his expansive new ideas began to unravel the Bible's authoritative claim as to the age of the Earth, Steno would enter the priesthood and rise to become a bishop, ultimately becoming venerated as a saint and beatified by the Catholic Church in 1988. Combining a thrilling scientific investigation with world-altering history and the portrait of an extraordinary genius, "The Seashell on the Mountaintop" gives us new insight into the very old planet on which we live, revealing how we learned to read the story told to us by the Earth itself, written in rock and stone.

Present at the Future: From Evolution to Nanotechnology, Candid and Controversial Conversations on Science and Nature


Ira Flatow - 2007
    For more than thirty-five years, Flatow has interviewed the top scientists and researchers on many NPR and PBS programs, including his popular Science Friday® spot on Talk of the Nation. In Present at the Future, he shares the groundbreaking revelations from those conversations, including the latest on nanotechnology, space travel, global warming, alternative energies, stem cell research, and using the universe as a super–super computer. Flatow also further explores his favorite topic of the science of everyday life with explanations on why the shower curtain sticks to you, the real story of why airplanes fly, and much more.From dark matter and the human consciousness to the surprising number of scientists who believe in a Creator, Present at the Future reveals the mysteries of science, nature, and technology that shape our lives.

Why We Hurt: The Natural History of Pain


Frank T. Vertosick Jr. - 2000
    Medical science has made brilliant discoveries over the last century but as any cancer patient can attest, it has yet to conquer, or even fully comprehend, pain. Beginning with his own battle against severe migraines, and citing numerous case studies of his patients, in Why We Hurt Dr. Frank Vertosick explains how pain evolved, and by highlighting the critical functions it serves, he helps us to understand its value. Well written, expertly researched, and movingly told, each chapter offers an amalgam of medicine, history, anthropology, drama, inspiration, and practical advice on a myriad of pain syndromes, from back pain to angina, arthritis to carpal tunnel syndrome. A skilled writer and compassionate physician, Vertosick believes knowledge is often the first, and best, analgesic, and in Why We Hurt, "he offers fascinating insight into the greatest mystery of all: what it means to be human" (The Seattle Times).