Pattern Recognition and Machine Learning


Christopher M. Bishop - 2006
    However, these activities can be viewed as two facets of the same field, and together they have undergone substantial development over the past ten years. In particular, Bayesian methods have grown from a specialist niche to become mainstream, while graphical models have emerged as a general framework for describing and applying probabilistic models. Also, the practical applicability of Bayesian methods has been greatly enhanced through the development of a range of approximate inference algorithms such as variational Bayes and expectation propagation. Similarly, new models based on kernels have had a significant impact on both algorithms and applications. This new textbook reflects these recent developments while providing a comprehensive introduction to the fields of pattern recognition and machine learning. It is aimed at advanced undergraduates or first-year PhD students, as well as researchers and practitioners, and assumes no previous knowledge of pattern recognition or machine learning concepts. Knowledge of multivariate calculus and basic linear algebra is required, and some familiarity with probabilities would be helpful though not essential as the book includes a self-contained introduction to basic probability theory.

All of Statistics: A Concise Course in Statistical Inference


Larry Wasserman - 2003
    But in spirit, the title is apt, as the book does cover a much broader range of topics than a typical introductory book on mathematical statistics. This book is for people who want to learn probability and statistics quickly. It is suitable for graduate or advanced undergraduate students in computer science, mathematics, statistics, and related disciplines. The book includes modern topics like nonparametric curve estimation, bootstrapping, and clas- sification, topics that are usually relegated to follow-up courses. The reader is presumed to know calculus and a little linear algebra. No previous knowledge of probability and statistics is required. Statistics, data mining, and machine learning are all concerned with collecting and analyzing data. For some time, statistics research was con- ducted in statistics departments while data mining and machine learning re- search was conducted in computer science departments. Statisticians thought that computer scientists were reinventing the wheel. Computer scientists thought that statistical theory didn't apply to their problems. Things are changing. Statisticians now recognize that computer scientists are making novel contributions while computer scientists now recognize the generality of statistical theory and methodology. Clever data mining algo- rithms are more scalable than statisticians ever thought possible. Formal sta- tistical theory is more pervasive than computer scientists had realized.

The Hundred-Page Machine Learning Book


Andriy Burkov - 2019
    During that week, you will learn almost everything modern machine learning has to offer. The author and other practitioners have spent years learning these concepts.Companion wiki — the book has a continuously updated wiki that extends some book chapters with additional information: Q&A, code snippets, further reading, tools, and other relevant resources.Flexible price and formats — choose from a variety of formats and price options: Kindle, hardcover, paperback, EPUB, PDF. If you buy an EPUB or a PDF, you decide the price you pay!Read first, buy later — download book chapters for free, read them and share with your friends and colleagues. Only if you liked the book or found it useful in your work, study or business, then buy it.

Applied Predictive Modeling


Max Kuhn - 2013
    Non- mathematical readers will appreciate the intuitive explanations of the techniques while an emphasis on problem-solving with real data across a wide variety of applications will aid practitioners who wish to extend their expertise. Readers should have knowledge of basic statistical ideas, such as correlation and linear regression analysis. While the text is biased against complex equations, a mathematical background is needed for advanced topics. Dr. Kuhn is a Director of Non-Clinical Statistics at Pfizer Global R&D in Groton Connecticut. He has been applying predictive models in the pharmaceutical and diagnostic industries for over 15 years and is the author of a number of R packages. Dr. Johnson has more than a decade of statistical consulting and predictive modeling experience in pharmaceutical research and development. He is a co-founder of Arbor Analytics, a firm specializing in predictive modeling and is a former Director of Statistics at Pfizer Global R&D. His scholarly work centers on the application and development of statistical methodology and learning algorithms. Applied Predictive Modeling covers the overall predictive modeling process, beginning with the crucial steps of data preprocessing, data splitting and foundations of model tuning. The text then provides intuitive explanations of numerous common and modern regression and classification techniques, always with an emphasis on illustrating and solving real data problems. Addressing practical concerns extends beyond model fitting to topics such as handling class imbalance, selecting predictors, and pinpointing causes of poor model performance-all of which are problems that occur frequently in practice. The text illustrates all parts of the modeling process through many hands-on, real-life examples. And every chapter contains extensive R code f

Mining of Massive Datasets


Anand Rajaraman - 2011
    This book focuses on practical algorithms that have been used to solve key problems in data mining and which can be used on even the largest datasets. It begins with a discussion of the map-reduce framework, an important tool for parallelizing algorithms automatically. The authors explain the tricks of locality-sensitive hashing and stream processing algorithms for mining data that arrives too fast for exhaustive processing. The PageRank idea and related tricks for organizing the Web are covered next. Other chapters cover the problems of finding frequent itemsets and clustering. The final chapters cover two applications: recommendation systems and Web advertising, each vital in e-commerce. Written by two authorities in database and Web technologies, this book is essential reading for students and practitioners alike.

Machine Learning: A Probabilistic Perspective


Kevin P. Murphy - 2012
    Machine learning provides these, developing methods that can automatically detect patterns in data and then use the uncovered patterns to predict future data. This textbook offers a comprehensive and self-contained introduction to the field of machine learning, based on a unified, probabilistic approach.The coverage combines breadth and depth, offering necessary background material on such topics as probability, optimization, and linear algebra as well as discussion of recent developments in the field, including conditional random fields, L1 regularization, and deep learning. The book is written in an informal, accessible style, complete with pseudo-code for the most important algorithms. All topics are copiously illustrated with color images and worked examples drawn from such application domains as biology, text processing, computer vision, and robotics. Rather than providing a cookbook of different heuristic methods, the book stresses a principled model-based approach, often using the language of graphical models to specify models in a concise and intuitive way. Almost all the models described have been implemented in a MATLAB software package—PMTK (probabilistic modeling toolkit)—that is freely available online. The book is suitable for upper-level undergraduates with an introductory-level college math background and beginning graduate students.

The Cartoon Guide to Statistics


Larry Gonick - 1993
    Never again will you order the Poisson Distribution in a French restaurant!This updated version features all new material.

Statistical Rethinking: A Bayesian Course with Examples in R and Stan


Richard McElreath - 2015
    Reflecting the need for even minor programming in today's model-based statistics, the book pushes readers to perform step-by-step calculations that are usually automated. This unique computational approach ensures that readers understand enough of the details to make reasonable choices and interpretations in their own modeling work.The text presents generalized linear multilevel models from a Bayesian perspective, relying on a simple logical interpretation of Bayesian probability and maximum entropy. It covers from the basics of regression to multilevel models. The author also discusses measurement error, missing data, and Gaussian process models for spatial and network autocorrelation.By using complete R code examples throughout, this book provides a practical foundation for performing statistical inference. Designed for both PhD students and seasoned professionals in the natural and social sciences, it prepares them for more advanced or specialized statistical modeling.Web ResourceThe book is accompanied by an R package (rethinking) that is available on the author's website and GitHub. The two core functions (map and map2stan) of this package allow a variety of statistical models to be constructed from standard model formulas.

Reinforcement Learning: An Introduction


Richard S. Sutton - 1998
    Their discussion ranges from the history of the field's intellectual foundations to the most recent developments and applications.Reinforcement learning, one of the most active research areas in artificial intelligence, is a computational approach to learning whereby an agent tries to maximize the total amount of reward it receives when interacting with a complex, uncertain environment. In Reinforcement Learning, Richard Sutton and Andrew Barto provide a clear and simple account of the key ideas and algorithms of reinforcement learning. Their discussion ranges from the history of the field's intellectual foundations to the most recent developments and applications. The only necessary mathematical background is familiarity with elementary concepts of probability.The book is divided into three parts. Part I defines the reinforcement learning problem in terms of Markov decision processes. Part II provides basic solution methods: dynamic programming, Monte Carlo methods, and temporal-difference learning. Part III presents a unified view of the solution methods and incorporates artificial neural networks, eligibility traces, and planning; the two final chapters present case studies and consider the future of reinforcement learning.

Machine Learning for Hackers


Drew Conway - 2012
    Authors Drew Conway and John Myles White help you understand machine learning and statistics tools through a series of hands-on case studies, instead of a traditional math-heavy presentation.Each chapter focuses on a specific problem in machine learning, such as classification, prediction, optimization, and recommendation. Using the R programming language, you'll learn how to analyze sample datasets and write simple machine learning algorithms. "Machine Learning for Hackers" is ideal for programmers from any background, including business, government, and academic research.Develop a naive Bayesian classifier to determine if an email is spam, based only on its textUse linear regression to predict the number of page views for the top 1,000 websitesLearn optimization techniques by attempting to break a simple letter cipherCompare and contrast U.S. Senators statistically, based on their voting recordsBuild a "whom to follow" recommendation system from Twitter data

Probability Theory: The Logic of Science


E.T. Jaynes - 1999
    It discusses new results, along with applications of probability theory to a variety of problems. The book contains many exercises and is suitable for use as a textbook on graduate-level courses involving data analysis. Aimed at readers already familiar with applied mathematics at an advanced undergraduate level or higher, it is of interest to scientists concerned with inference from incomplete information.

Applied Multivariate Statistical Analysis


Richard A. Johnson - 1982
    of Wisconsin-Madison) and Wichern (Texas A&M U.) present the newest edition of this college text on the statistical methods for describing and analyzing multivariate data, designed for students who have taken two or more statistics courses. The fifth edition includes the addition of seve

Data Science from Scratch: First Principles with Python


Joel Grus - 2015
    In this book, you’ll learn how many of the most fundamental data science tools and algorithms work by implementing them from scratch. If you have an aptitude for mathematics and some programming skills, author Joel Grus will help you get comfortable with the math and statistics at the core of data science, and with hacking skills you need to get started as a data scientist. Today’s messy glut of data holds answers to questions no one’s even thought to ask. This book provides you with the know-how to dig those answers out. Get a crash course in Python Learn the basics of linear algebra, statistics, and probability—and understand how and when they're used in data science Collect, explore, clean, munge, and manipulate data Dive into the fundamentals of machine learning Implement models such as k-nearest Neighbors, Naive Bayes, linear and logistic regression, decision trees, neural networks, and clustering Explore recommender systems, natural language processing, network analysis, MapReduce, and databases

Deep Learning with Python


François Chollet - 2017
    It is the technology behind photo tagging systems at Facebook and Google, self-driving cars, speech recognition systems on your smartphone, and much more.In particular, Deep learning excels at solving machine perception problems: understanding the content of image data, video data, or sound data. Here's a simple example: say you have a large collection of images, and that you want tags associated with each image, for example, "dog," "cat," etc. Deep learning can allow you to create a system that understands how to map such tags to images, learning only from examples. This system can then be applied to new images, automating the task of photo tagging. A deep learning model only has to be fed examples of a task to start generating useful results on new data.

Practical Statistics for Data Scientists: 50 Essential Concepts


Peter Bruce - 2017
    Courses and books on basic statistics rarely cover the topic from a data science perspective. This practical guide explains how to apply various statistical methods to data science, tells you how to avoid their misuse, and gives you advice on what's important and what's not.Many data science resources incorporate statistical methods but lack a deeper statistical perspective. If you're familiar with the R programming language, and have some exposure to statistics, this quick reference bridges the gap in an accessible, readable format.With this book, you'll learn:Why exploratory data analysis is a key preliminary step in data scienceHow random sampling can reduce bias and yield a higher quality dataset, even with big dataHow the principles of experimental design yield definitive answers to questionsHow to use regression to estimate outcomes and detect anomaliesKey classification techniques for predicting which categories a record belongs toStatistical machine learning methods that "learn" from dataUnsupervised learning methods for extracting meaning from unlabeled data