Book picks similar to
Modern Computer Vision with PyTorch: Explore deep learning concepts and implement over 50 real-world image applications by V Kishore Ayyadevara
machine-learning
math-cs
programming
tb-data
The Deep Learning Revolution
Terrence J. Sejnowski - 2018
Deep learning networks can play poker better than professional poker players and defeat a world champion at Go. In this book, Terry Sejnowski explains how deep learning went from being an arcane academic field to a disruptive technology in the information economy.Sejnowski played an important role in the founding of deep learning, as one of a small group of researchers in the 1980s who challenged the prevailing logic-and-symbol based version of AI. The new version of AI Sejnowski and others developed, which became deep learning, is fueled instead by data. Deep networks learn from data in the same way that babies experience the world, starting with fresh eyes and gradually acquiring the skills needed to navigate novel environments. Learning algorithms extract information from raw data; information can be used to create knowledge; knowledge underlies understanding; understanding leads to wisdom. Someday a driverless car will know the road better than you do and drive with more skill; a deep learning network will diagnose your illness; a personal cognitive assistant will augment your puny human brain. It took nature many millions of years to evolve human intelligence; AI is on a trajectory measured in decades. Sejnowski prepares us for a deep learning future.
Genius Makers: The Mavericks Who Brought AI to Google, Facebook, and the World
Cade Metz - 2021
Through the lives of Geoff Hinton and other major players, Metz explains this transformative technology and makes the quest thrilling.--Walter Isaacson, author of The Code Breaker
Recipient of starred reviews in both Kirkus and Library JournalTHE UNTOLD TECH STORY OF OUR TIMEWhat does it mean to be smart? To be human? What do we really want from life and the intelligence we have, or might create?With deep and exclusive reporting, across hundreds of interviews, New York Times Silicon Valley journalist Cade Metz brings you into the rooms where these questions are being answered. Where an extraordinarily powerful new artificial intelligence has been built into our biggest companies, our social discourse, and our daily lives, with few of us even noticing.Long dismissed as a technology of the distant future, artificial intelligence was a project consigned to the fringes of the scientific community. Then two researchers changed everything. One was a sixty-four-year-old computer science professor who didn't drive and didn't fly because he could no longer sit down--but still made his way across North America for the moment that would define a new age of technology. The other was a thirty-six-year-old neuroscientist and chess prodigy who laid claim to being the greatest game player of all time before vowing to build a machine that could do anything the human brain could do.They took two very different paths to that lofty goal, and they disagreed on how quickly it would arrive. But both were soon drawn into the heart of the tech industry. Their ideas drove a new kind of arms race, spanning Google, Microsoft, Facebook, and OpenAI, a new lab founded by Silicon Valley kingpin Elon Musk. But some believed that China would beat them all to the finish line.Genius Makers dramatically presents the fierce conflict between national interests, shareholder value, the pursuit of scientific knowledge, and the very human concerns about privacy, security, bias, and prejudice. Like a great Victorian novel, this world of eccentric, brilliant, often unimaginably yet suddenly wealthy characters draws you into the most profound moral questions we can ask. And like a great mystery, it presents the story and facts that lead to a core, vital question:How far will we let it go?
Learn Java in One Day and Learn It Well: Java for Beginners with Hands-on Project
Jamie Chan - 2016
Learn Java Programming Fast with a unique Hands-On Project. Book 4 of the Learn Coding Fast Series. Covers Java 8. Have you always wanted to learn computer programming but are afraid it'll be too difficult for you? Or perhaps you know other programming languages but are interested in learning the Java language fast? This book is for you. You no longer have to waste your time and money trying to learn Java from boring books that are 600 pages long, expensive online courses or complicated Java tutorials that just leave you more confused and frustrated. What this book offers... Java for Beginners Complex concepts are broken down into simple steps to ensure that you can easily master the Java language even if you have never coded before. Carefully Chosen Java Examples Examples are carefully chosen to illustrate all concepts. In addition, the output for all examples are provided immediately so you do not have to wait till you have access to your computer to test the examples. Careful selection of topics Topics are carefully selected to give you a broad exposure to Java, while not overwhelming you with information overload. These topics include object-oriented programming concepts, error handling techniques, file handling techniques and more. In addition, new features in Java (such as lambda expressions and default methods etc) are also covered so that you are always up to date with the latest advancement in the Java language. Learn The Java Programming Language Fast Concepts are presented in a "to-the-point" style to cater to the busy individual. You no longer have to endure boring and lengthy Java textbooks that simply puts you to sleep. With this book, you can learn Java fast and start coding immediately. How is this book different... The best way to learn Java is by doing. This book includes a unique project at the end of the book that requires the application of all the concepts taught previously. Working through the project will not only give you an immense sense of achievement, it’ll also help you retain the knowledge and master the language. Are you ready to dip your toes into the exciting world of Java coding? This book is for you. Click the BUY button and download it now. What you'll learn: Introduction to Java - What is Java? - What software do you need to code Java programs? - How to install and run JDK and Netbeans? Data types and Operators - What are the eight primitive types in Java? - What are arrays and lists? - How to format Java strings - What is a primitive type vs reference type? - What are the common Java operators? Object Oriented Programming - What is object oriented programming? - How to write your own classes - What are fields, methods and constructors? - What is encapsulation, inheritance and polymorphism? - What is an abstract class and interface? Controlling the Flow of a Program - What are condition statements? - How to use control flow statements in Java - How to handle errors and exceptions - How to throw your own exception
The Way to Go: A Thorough Introduction to the Go Programming Language
Ivo Balbaert - 2012
"
Data Science from Scratch: First Principles with Python
Joel Grus - 2015
In this book, you’ll learn how many of the most fundamental data science tools and algorithms work by implementing them from scratch.
If you have an aptitude for mathematics and some programming skills, author Joel Grus will help you get comfortable with the math and statistics at the core of data science, and with hacking skills you need to get started as a data scientist. Today’s messy glut of data holds answers to questions no one’s even thought to ask. This book provides you with the know-how to dig those answers out.
Get a crash course in Python
Learn the basics of linear algebra, statistics, and probability—and understand how and when they're used in data science
Collect, explore, clean, munge, and manipulate data
Dive into the fundamentals of machine learning
Implement models such as k-nearest Neighbors, Naive Bayes, linear and logistic regression, decision trees, neural networks, and clustering
Explore recommender systems, natural language processing, network analysis, MapReduce, and databases
Bayesian Methods for Hackers: Probabilistic Programming and Bayesian Inference
Cameron Davidson-Pilon - 2014
However, most discussions of Bayesian inference rely on intensely complex mathematical analyses and artificial examples, making it inaccessible to anyone without a strong mathematical background. Now, though, Cameron Davidson-Pilon introduces Bayesian inference from a computational perspective, bridging theory to practice-freeing you to get results using computing power.
Bayesian Methods for Hackers
illuminates Bayesian inference through probabilistic programming with the powerful PyMC language and the closely related Python tools NumPy, SciPy, and Matplotlib. Using this approach, you can reach effective solutions in small increments, without extensive mathematical intervention. Davidson-Pilon begins by introducing the concepts underlying Bayesian inference, comparing it with other techniques and guiding you through building and training your first Bayesian model. Next, he introduces PyMC through a series of detailed examples and intuitive explanations that have been refined after extensive user feedback. You'll learn how to use the Markov Chain Monte Carlo algorithm, choose appropriate sample sizes and priors, work with loss functions, and apply Bayesian inference in domains ranging from finance to marketing. Once you've mastered these techniques, you'll constantly turn to this guide for the working PyMC code you need to jumpstart future projects. Coverage includes - Learning the Bayesian "state of mind" and its practical implications - Understanding how computers perform Bayesian inference - Using the PyMC Python library to program Bayesian analyses - Building and debugging models with PyMC - Testing your model's "goodness of fit" - Opening the "black box" of the Markov Chain Monte Carlo algorithm to see how and why it works - Leveraging the power of the "Law of Large Numbers" - Mastering key concepts, such as clustering, convergence, autocorrelation, and thinning - Using loss functions to measure an estimate's weaknesses based on your goals and desired outcomes - Selecting appropriate priors and understanding how their influence changes with dataset size - Overcoming the "exploration versus exploitation" dilemma: deciding when "pretty good" is good enough - Using Bayesian inference to improve A/B testing - Solving data science problems when only small amounts of data are available Cameron Davidson-Pilon has worked in many areas of applied mathematics, from the evolutionary dynamics of genes and diseases to stochastic modeling of financial prices. His contributions to the open source community include lifelines, an implementation of survival analysis in Python. Educated at the University of Waterloo and at the Independent University of Moscow, he currently works with the online commerce leader Shopify.
Sun Certified Programmer & Developer for Java 2 Study Guide (Exam 310-035 & 310-027)
Kathy Sierra - 2002
More than 250 challenging practice questions have been completely revised to closely model the format, tone, topics, and difficulty of the real exam. An integrated study system based on proven pedagogy, exam coverage includes step-by-step exercises, special Exam Watch notes, On-the-Job elements, and Self Tests with in-depth answer explanations to help reinforce and teach practical skills.Praise for the author:"Finally A Java certification book that explains everything clearly. All you need to pass the exam is in this book."--Solveig Haugland, Technical Trainer and Former Sun Course Developer"Who better to write a Java study guide than Kathy Sierra, the reigning queen of Java instruction? Kathy Sierra has done it again--here is a study guide that almost guarantees you a certification "--James Cubeta, Systems Engineer, SGI"The thing I appreciate most about Kathy is her quest to make us all remember that we are teaching people and not just lecturing about Java. Her passion and desire for the highest quality education that meets the needs of the individual student is positively unparalleled at SunEd. Undoubtedly there are hundreds of students who have benefited from taking Kathy's classes."--Victor Peters, founder Next Step Education & Software Sun Certified Java Instructor"I want to thank Kathy for the EXCELLENT Study Guide. The book is well written, every concept is clearly explained using a real life example, and the book states what you specifically need to know for the exam. The way it's written, you feel that you're in a classroom and someone is actually teaching you the difficult concepts, but not in a dry, formal manner. The questions at the end of the chapters are also REALLY good, and I am sure they will help candidates pass the test. Watch out for this Wickedly Smart book."-Alfred Raouf, Web Solution Developer, Kemety.Net"The Sun Certification exam was certainly no walk in the park but Kathy's material allowed me to not only pass the exam, but Ace it "--Mary Whetsel, Sr. Technology Specialist, Application Strategy and Integration, The St. Paul Companies
Mining of Massive Datasets
Anand Rajaraman - 2011
This book focuses on practical algorithms that have been used to solve key problems in data mining and which can be used on even the largest datasets. It begins with a discussion of the map-reduce framework, an important tool for parallelizing algorithms automatically. The authors explain the tricks of locality-sensitive hashing and stream processing algorithms for mining data that arrives too fast for exhaustive processing. The PageRank idea and related tricks for organizing the Web are covered next. Other chapters cover the problems of finding frequent itemsets and clustering. The final chapters cover two applications: recommendation systems and Web advertising, each vital in e-commerce. Written by two authorities in database and Web technologies, this book is essential reading for students and practitioners alike.
Foundations of Statistical Natural Language Processing
Christopher D. Manning - 1999
This foundational text is the first comprehensive introduction to statistical natural language processing (NLP) to appear. The book contains all the theory and algorithms needed for building NLP tools. It provides broad but rigorous coverage of mathematical and linguistic foundations, as well as detailed discussion of statistical methods, allowing students and researchers to construct their own implementations. The book covers collocation finding, word sense disambiguation, probabilistic parsing, information retrieval, and other applications.
The Intelligent Web: Search, Smart Algorithms, and Big Data
Gautam Shroff - 2013
These days, linger over a Web page selling lamps, and they will turn up at the advertising margins as you move around the Internet, reminding you, tempting you to make that purchase. Search engines such as Google can now look deep into the data on the Web to pull out instances of the words you are looking for. And there are pages that collect and assess information to give you a snapshot of changing political opinion. These are just basic examples of the growth of Web intelligence, as increasingly sophisticated algorithms operate on the vast and growing amount of data on the Web, sifting, selecting, comparing, aggregating, correcting; following simple but powerful rules to decide what matters. While original optimism for Artificial Intelligence declined, this new kind of machine intelligence is emerging as the Web grows ever larger and more interconnected.Gautam Shroff takes us on a journey through the computer science of search, natural language, text mining, machine learning, swarm computing, and semantic reasoning, from Watson to self-driving cars. This machine intelligence may even mimic at a basic level what happens in the brain.
Make Your Own Neural Network: An In-depth Visual Introduction For Beginners
Michael Taylor - 2017
A step-by-step visual journey through the mathematics of neural networks, and making your own using Python and Tensorflow.
The Model Thinker: What You Need to Know to Make Data Work for You
Scott E. Page - 2018
But as anyone who has ever opened up a spreadsheet packed with seemingly infinite lines of data knows, numbers aren't enough: we need to know how to make those numbers talk. In The Model Thinker, social scientist Scott E. Page shows us the mathematical, statistical, and computational models—from linear regression to random walks and far beyond—that can turn anyone into a genius. At the core of the book is Page's "many-model paradigm," which shows the reader how to apply multiple models to organize the data, leading to wiser choices, more accurate predictions, and more robust designs. The Model Thinker provides a toolkit for business people, students, scientists, pollsters, and bloggers to make them better, clearer thinkers, able to leverage data and information to their advantage.
The Society of Mind
Marvin Minsky - 1985
Mirroring his theory, Minsky boldly casts The Society of Mind as an intellectual puzzle whose pieces are assembled along the way. Each chapter -- on a self-contained page -- corresponds to a piece in the puzzle. As the pages turn, a unified theory of the mind emerges, like a mosaic. Ingenious, amusing, and easy to read, The Society of Mind is an adventure in imagination.
R Packages
Hadley Wickham - 2015
This practical book shows you how to bundle reusable R functions, sample data, and documentation together by applying author Hadley Wickham’s package development philosophy. In the process, you’ll work with devtools, roxygen, and testthat, a set of R packages that automate common development tasks. Devtools encapsulates best practices that Hadley has learned from years of working with this programming language.
Ideal for developers, data scientists, and programmers with various backgrounds, this book starts you with the basics and shows you how to improve your package writing over time. You’ll learn to focus on what you want your package to do, rather than think about package structure.
Learn about the most useful components of an R package, including vignettes and unit tests
Automate anything you can, taking advantage of the years of development experience embodied in devtools
Get tips on good style, such as organizing functions into files
Streamline your development process with devtools
Learn the best way to submit your package to the Comprehensive R Archive Network (CRAN)
Learn from a well-respected member of the R community who created 30 R packages, including ggplot2, dplyr, and tidyr
Machine Learning: A Probabilistic Perspective
Kevin P. Murphy - 2012
Machine learning provides these, developing methods that can automatically detect patterns in data and then use the uncovered patterns to predict future data. This textbook offers a comprehensive and self-contained introduction to the field of machine learning, based on a unified, probabilistic approach.The coverage combines breadth and depth, offering necessary background material on such topics as probability, optimization, and linear algebra as well as discussion of recent developments in the field, including conditional random fields, L1 regularization, and deep learning. The book is written in an informal, accessible style, complete with pseudo-code for the most important algorithms. All topics are copiously illustrated with color images and worked examples drawn from such application domains as biology, text processing, computer vision, and robotics. Rather than providing a cookbook of different heuristic methods, the book stresses a principled model-based approach, often using the language of graphical models to specify models in a concise and intuitive way. Almost all the models described have been implemented in a MATLAB software package—PMTK (probabilistic modeling toolkit)—that is freely available online. The book is suitable for upper-level undergraduates with an introductory-level college math background and beginning graduate students.