Book picks similar to
AngularJS: Up and Running: Enhanced Productivity with Structured Web Apps by Shyam Seshadri
programming
technical
javascript
computer-science
The Well-Grounded Rubyist
David A. Black - 2008
It's a beautifully written tutorial that begins with the basic steps to get your first Ruby program up and running and goes on to explore sophisticated topics like callable objects, reflection, and threading. Whether the topic is simple or tough, the book's easy-to-follow examples and explanations will give you immediate confidence as you build your Ruby programming skills.The Well-Grounded Rubyist is a thoroughly revised and updated edition of the best-selling Ruby for Rails. In this new book, expert author David A. Black moves beyond Rails and presents a broader view of Ruby. It covers Ruby 1.9, and keeps the same sharp focus and clear writing that made Ruby for Rails stand out.Starting with the basics, The Well-Grounded Rubyist explains Ruby objects and their interactions from the ground up. In the middle chapters, the book turns to an examination of Ruby's built-in, core classes, showing the reader how to manipulate strings, numbers, arrays, ranges, hashes, sets, and more. Regular expressions get attention, as do file and other I/O operations.Along the way, the reader is introduced to numerous tools included in the standard Ruby distribution--tools like the task manager Rake and the interactive Ruby console-based interpreter Irb--that facilitate Ruby development and make it an integrated and pleasant experience.The book encompasses advanced topics, like the design of Ruby's class and module system, and the use of Ruby threads, taking even the new Rubyist deep into the language and giving every reader the foundations necessary to use, explore, and enjoy this unusually popular and versatile language.It's no wonder one reader commented: "The technical depth is just right to not distract beginners, yet detailed enough for more advanced readers."Purchase of the print book comes with an offer of a free PDF, ePub, and Kindle eBook from Manning. Also available is all code from the book.
Apprenticeship Patterns: Guidance for the Aspiring Software Craftsman
Dave Hoover - 2009
To grow professionally, you also need soft skills and effective learning techniques. Honing those skills is what this book is all about. Authors Dave Hoover and Adewale Oshineye have cataloged dozens of behavior patterns to help you perfect essential aspects of your craft. Compiled from years of research, many interviews, and feedback from O'Reilly's online forum, these patterns address difficult situations that programmers, administrators, and DBAs face every day. And it's not just about financial success. Apprenticeship Patterns also approaches software development as a means to personal fulfillment. Discover how this book can help you make the best of both your life and your career. Solutions to some common obstacles that this book explores in-depth include:Burned out at work? "Nurture Your Passion" by finding a pet project to rediscover the joy of problem solving.Feeling overwhelmed by new information? Re-explore familiar territory by building something you've built before, then use "Retreat into Competence" to move forward again.Stuck in your learning? Seek a team of experienced and talented developers with whom you can "Be the Worst" for a while. "Brilliant stuff! Reading this book was like being in a time machine that pulled me back to those key learning moments in my career as a professional software developer and, instead of having to learn best practices the hard way, I had a guru sitting on my shoulder guiding me every step towards master craftsmanship. I'll certainly be recommending this book to clients. I wish I had this book 14 years ago!" -Russ Miles, CEO, OpenCredo
The Elements of Statistical Learning: Data Mining, Inference, and Prediction
Trevor Hastie - 2001
With it has come vast amounts of data in a variety of fields such as medicine, biology, finance, and marketing. The challenge of understanding these data has led to the development of new tools in the field of statistics, and spawned new areas such as data mining, machine learning, and bioinformatics. Many of these tools have common underpinnings but are often expressed with different terminology. This book describes the important ideas in these areas in a common conceptual framework. While the approach is statistical, the emphasis is on concepts rather than mathematics. Many examples are given, with a liberal use of color graphics. It should be a valuable resource for statisticians and anyone interested in data mining in science or industry. The book's coverage is broad, from supervised learning (prediction) to unsupervised learning. The many topics include neural networks, support vector machines, classification trees and boosting—the first comprehensive treatment of this topic in any book. Trevor Hastie, Robert Tibshirani, and Jerome Friedman are professors of statistics at Stanford University. They are prominent researchers in this area: Hastie and Tibshirani developed generalized additive models and wrote a popular book of that title. Hastie wrote much of the statistical modeling software in S-PLUS and invented principal curves and surfaces. Tibshirani proposed the Lasso and is co-author of the very successful An Introduction to the Bootstrap. Friedman is the co-inventor of many data-mining tools including CART, MARS, and projection pursuit.