Book picks similar to
Dynamic Programming And Optimal Control, Vol. 1 by Dimitri P. Bertsekas
optimization
machine-learning
computer-science
textbooks
Programming Collective Intelligence: Building Smart Web 2.0 Applications
Toby Segaran - 2002
With the sophisticated algorithms in this book, you can write smart programs to access interesting datasets from other web sites, collect data from users of your own applications, and analyze and understand the data once you've found it.Programming Collective Intelligence takes you into the world of machine learning and statistics, and explains how to draw conclusions about user experience, marketing, personal tastes, and human behavior in general -- all from information that you and others collect every day. Each algorithm is described clearly and concisely with code that can immediately be used on your web site, blog, Wiki, or specialized application. This book explains:Collaborative filtering techniques that enable online retailers to recommend products or media Methods of clustering to detect groups of similar items in a large dataset Search engine features -- crawlers, indexers, query engines, and the PageRank algorithm Optimization algorithms that search millions of possible solutions to a problem and choose the best one Bayesian filtering, used in spam filters for classifying documents based on word types and other features Using decision trees not only to make predictions, but to model the way decisions are made Predicting numerical values rather than classifications to build price models Support vector machines to match people in online dating sites Non-negative matrix factorization to find the independent features in a dataset Evolving intelligence for problem solving -- how a computer develops its skill by improving its own code the more it plays a game Each chapter includes exercises for extending the algorithms to make them more powerful. Go beyond simple database-backed applications and put the wealth of Internet data to work for you. "Bravo! I cannot think of a better way for a developer to first learn these algorithms and methods, nor can I think of a better way for me (an old AI dog) to reinvigorate my knowledge of the details."-- Dan Russell, Google "Toby's book does a great job of breaking down the complex subject matter of machine-learning algorithms into practical, easy-to-understand examples that can be directly applied to analysis of social interaction across the Web today. If I had this book two years ago, it would have saved precious time going down some fruitless paths."-- Tim Wolters, CTO, Collective Intellect
Emergence: The Connected Lives of Ants, Brains, Cities, and Software
Steven Johnson - 2001
Explaining why the whole is sometimes smarter than the sum of its parts, Johnson presents surprising examples of feedback, self-organization, and adaptive learning. How does a lively neighborhood evolve out of a disconnected group of shopkeepers, bartenders, and real estate developers? How does a media event take on a life of its own? How will new software programs create an intelligent World Wide Web? In the coming years, the power of self-organization -- coupled with the connective technology of the Internet -- will usher in a revolution every bit as significant as the introduction of electricity. Provocative and engaging, Emergence puts you on the front lines of this exciting upheaval in science and thought.
UNIX and Linux System Administration Handbook
Evi Nemeth - 2010
This is one of those cases. The UNIX System Administration Handbook is one of the few books we ever measured ourselves against." -From the Foreword by Tim O'Reilly, founder of O'Reilly Media "This book is fun and functional as a desktop reference. If you use UNIX and Linux systems, you need this book in your short-reach library. It covers a bit of the systems' history but doesn't bloviate. It's just straightfoward information delivered in colorful and memorable fashion." -Jason A. Nunnelley"This is a comprehensive guide to the care and feeding of UNIX and Linux systems. The authors present the facts along with seasoned advice and real-world examples. Their perspective on the variations among systems is valuable for anyone who runs a heterogeneous computing facility." -Pat Parseghian The twentieth anniversary edition of the world's best-selling UNIX system administration book has been made even better by adding coverage of the leading Linux distributions: Ubuntu, openSUSE, and RHEL. This book approaches system administration in a practical way and is an invaluable reference for both new administrators and experienced professionals. It details best practices for every facet of system administration, including storage management, network design and administration, email, web hosting, scripting, software configuration management, performance analysis, Windows interoperability, virtualization, DNS, security, management of IT service organizations, and much more. UNIX(R) and Linux(R) System Administration Handbook, Fourth Edition, reflects the current versions of these operating systems: Ubuntu(R) LinuxopenSUSE(R) LinuxRed Hat(R) Enterprise Linux(R)Oracle America(R) Solaris(TM) (formerly Sun Solaris)HP HP-UX(R)IBM AIX(R)
Machine Learning: An Algorithmic Perspective
Stephen Marsland - 2009
The field is ready for a text that not only demonstrates how to use the algorithms that make up machine learning methods, but also provides the background needed to understand how and why these algorithms work. Machine Learning: An Algorithmic Perspective is that text.Theory Backed up by Practical ExamplesThe book covers neural networks, graphical models, reinforcement learning, evolutionary algorithms, dimensionality reduction methods, and the important area of optimization. It treads the fine line between adequate academic rigor and overwhelming students with equations and mathematical concepts. The author addresses the topics in a practical way while providing complete information and references where other expositions can be found. He includes examples based on widely available datasets and practical and theoretical problems to test understanding and application of the material. The book describes algorithms with code examples backed up by a website that provides working implementations in Python. The author uses data from a variety of applications to demonstrate the methods and includes practical problems for students to solve.Highlights a Range of Disciplines and ApplicationsDrawing from computer science, statistics, mathematics, and engineering, the multidisciplinary nature of machine learning is underscored by its applicability to areas ranging from finance to biology and medicine to physics and chemistry. Written in an easily accessible style, this book bridges the gaps between disciplines, providing the ideal blend of theory and practical, applicable knowledge."
Core Java 2, Volume I--Fundamentals (Core Series)
Cay S. Horstmann - 1999
A no-nonsense tutorial and reliable reference, this book features thoroughly tested real-world examples. The most important language and library features are demonstrated with deliberately simple sample programs, but they aren't fake and they don't cut corners. More importantly, all of the programs have been updated for J2SE 5.0 and should make good starting points for your own code. You won't find any toy examples here. This is a book for programmers who want to write real code to solve real problems. Cay S. Horstmann is a professor of computer science at San Jose State University. Previously he was vice president and chief technology officer of Preview Systems Inc. and a consultant on C++, Java, and Internet programming for major corporations, universities, and organizations. Gary Cornell has written or cowritten more than twenty popular computer books. He has a Ph.D. from Brown University and has been a visiting scientist at IBM Watson Laboratories, as well as a professor at the University of Connecticut.
Bayesian Methods for Hackers: Probabilistic Programming and Bayesian Inference
Cameron Davidson-Pilon - 2014
However, most discussions of Bayesian inference rely on intensely complex mathematical analyses and artificial examples, making it inaccessible to anyone without a strong mathematical background. Now, though, Cameron Davidson-Pilon introduces Bayesian inference from a computational perspective, bridging theory to practice-freeing you to get results using computing power.
Bayesian Methods for Hackers
illuminates Bayesian inference through probabilistic programming with the powerful PyMC language and the closely related Python tools NumPy, SciPy, and Matplotlib. Using this approach, you can reach effective solutions in small increments, without extensive mathematical intervention. Davidson-Pilon begins by introducing the concepts underlying Bayesian inference, comparing it with other techniques and guiding you through building and training your first Bayesian model. Next, he introduces PyMC through a series of detailed examples and intuitive explanations that have been refined after extensive user feedback. You'll learn how to use the Markov Chain Monte Carlo algorithm, choose appropriate sample sizes and priors, work with loss functions, and apply Bayesian inference in domains ranging from finance to marketing. Once you've mastered these techniques, you'll constantly turn to this guide for the working PyMC code you need to jumpstart future projects. Coverage includes - Learning the Bayesian "state of mind" and its practical implications - Understanding how computers perform Bayesian inference - Using the PyMC Python library to program Bayesian analyses - Building and debugging models with PyMC - Testing your model's "goodness of fit" - Opening the "black box" of the Markov Chain Monte Carlo algorithm to see how and why it works - Leveraging the power of the "Law of Large Numbers" - Mastering key concepts, such as clustering, convergence, autocorrelation, and thinning - Using loss functions to measure an estimate's weaknesses based on your goals and desired outcomes - Selecting appropriate priors and understanding how their influence changes with dataset size - Overcoming the "exploration versus exploitation" dilemma: deciding when "pretty good" is good enough - Using Bayesian inference to improve A/B testing - Solving data science problems when only small amounts of data are available Cameron Davidson-Pilon has worked in many areas of applied mathematics, from the evolutionary dynamics of genes and diseases to stochastic modeling of financial prices. His contributions to the open source community include lifelines, an implementation of survival analysis in Python. Educated at the University of Waterloo and at the Independent University of Moscow, he currently works with the online commerce leader Shopify.
Operations Research: Applications and Algorithms (with CD-ROM and InfoTrac)
Wayne L. Winston - 1987
It moves beyond a mere study of algorithms without sacrificing the rigor that faculty desire. As in every edition, Winston reinforces the book's successful features and coverage with the most recent developments in the field. The Student Suite CD-ROM, which now accompanies every new copy of the text, contains the latest versions of commercial software for optimization, simulation, and decision analysis.
A Book of Abstract Algebra
Charles C. Pinter - 1982
Its easy-to-read treatment offers an intuitive approach, featuring informal discussions followed by thematically arranged exercises. Intended for undergraduate courses in abstract algebra, it is suitable for junior- and senior-level math majors and future math teachers. This second edition features additional exercises to improve student familiarity with applications. An introductory chapter traces concepts of abstract algebra from their historical roots. Succeeding chapters avoid the conventional format of definition-theorem-proof-corollary-example; instead, they take the form of a discussion with students, focusing on explanations and offering motivation. Each chapter rests upon a central theme, usually a specific application or use. The author provides elementary background as needed and discusses standard topics in their usual order. He introduces many advanced and peripheral subjects in the plentiful exercises, which are accompanied by ample instruction and commentary and offer a wide range of experiences to students at different levels of ability.
Beginning Programming All-In-One Desk Reference for Dummies
Wallace Wang - 2007
If programming intrigues you (for whatever reason), Beginning Programming All-In-One Desk Reference For Dummies is like having a starter programming library all in one handy, if hefty, book.In this practical guide, you'll find out about algorithms, best practices, compiling, debugging your programs, and much more. The concepts are illustrated in several different programming languages, so you'll get a feel for the variety of languages and the needs they fill.Inside you'll discover seven minibooks:Getting Started: From learning methods for writing programs to becoming familiar with types of programming languages, you'll lay the foundation for your programming adventure with this minibook. Programming Basics: Here you'll dive into how programs work, variables, data types, branching, looping, subprograms, objects, and more. Data Structures: From structures, arrays, sets, linked lists, and collections, to stacks, queues, graphs, and trees, you'll dig deeply into the data. Algorithms: This minibook shows you how to sort and search algorithms, how to use string searching, and gets into data compression and encryption. Web Programming: Learn everything you need to know about coding for the web: HyperText. Markup Language (better known simply as HTML), CSS, JavaScript, PHP, and Ruby. Programming Language Syntax: Introduces you to the syntax of various languages - C, C++, Java, C#, Perl, Python, Pascal, Delphi, Visual Basic, REALbasic - so you know when to use which one. Applications: This is the fun part where you put your newly developed programming skills to work in practical ways. Additionally, Beginning Programming All-In-One Desk Reference For Dummies shows you how to decide what you want your program to do, turn your instructions into "machine language" that the computer understands, use programming best practices, explore the "how" and "why" of data structuring, and more. And you'll get a look into various applications like database management, bioinformatics, computer security, and artificial intelligence. After you get this book and start coding, you'll soon realize that -- wow! You're a programmer!
Functional Programming in Scala
Rúnar Bjarnason - 2013
As a result, functional code is easier to test and reuse, simpler to parallelize, and less prone to bugs. Scala is an emerging JVM language that offers strong support for FP. Its familiar syntax and transparent interoperability with existing Java libraries make Scala a great place to start learning FP.Functional Programming in Scala is a serious tutorial for programmers looking to learn FP and apply it to the everyday business of coding. The book guides readers from basic techniques to advanced topics in a logical, concise, and clear progression. In it, they'll find concrete examples and exercises that open up the world of functional programming.Purchase of the print book comes with an offer of a free PDF, ePub, and Kindle eBook from Manning. Also available is all code from the book.
Designing Distributed Systems: Patterns and Paradigms for Scalable, Reliable Services
Brendan Burns - 2018
Building these systems is complicated and, because few formally established patterns are available for designing them, most of these systems end up looking very unique. This practical guide shows you how to use existing software design patterns for designing and building reliable distributed applications.Although patterns such as those developed more than 20 years ago by the Gang of Four were largely restricted to running on single machines, author Brendan Burns--a Partner Architect in Microsoft Azure--demonstrates how you can reuse several of them in modern distributed applications.Systems engineers and application developers will learn how these patterns provide a common language and framework for dramatically increasing the quality of your system.
Practical Cryptography
Niels Ferguson - 2003
The gold standard for attaining security is cryptography because it provides the most reliable tools for storing or transmitting digital information. Written by Niels Ferguson, lead cryptographer for Counterpane, Bruce Schneier's security company, and Bruce Schneier himself, this is the much anticipated follow-up book to Schneier's seminal encyclopedic reference, Applied Cryptography, Second Edition (0-471-11709-9), which has sold more than 150,000 copies. Niels Ferguson (Amsterdam, Netherlands) is a cryptographic engineer and consultant at Counterpane Internet Security. He has extensive experience in the creation and design of security algorithms, protocols, and multinational security infrastructures. Previously, Ferguson was a cryptographer for DigiCash and CWI. At CWI he developed the first generation of off-line payment protocols. He has published numerous scientific papers. Bruce Schneier (Minneapolis, MN) is Founder and Chief Technical Officer at Counterpane Internet Security, a managed-security monitoring company. He is also the author of Secrets and Lies: Digital Security in a Networked World (0-471-25311-1).
Elementary Analysis: The Theory of Calculus
Kenneth A. Ross - 1980
It is highly recommended for anyone planning to study advanced analysis, e.g., complex variables, differential equations, Fourier analysis, numerical analysis, several variable calculus, and statistics. It is also recommended for future secondary school teachers. A limited number of concepts involving the real line and functions on the real line are studied. Many abstract ideas, such as metric spaces and ordered systems, are avoided. The least upper bound property is taken as an axiom and the order properties of the real line are exploited throughout. A thorough treatment of sequences of numbers is used as a basis for studying standard calculus topics. Optional sections invite students to study such topics as metric spaces and Riemann-Stieltjes integrals.
Masterminds of Programming: Conversations with the Creators of Major Programming Languages
Federico BiancuzziJohn Hughes - 2009
In this unique collection, you'll learn about the processes that led to specific design decisions, including the goals they had in mind, the trade-offs they had to make, and how their experiences have left an impact on programming today. Masterminds of Programming includes individual interviews with:Adin D. Falkoff: APL Thomas E. Kurtz: BASIC Charles H. Moore: FORTH Robin Milner: ML Donald D. Chamberlin: SQL Alfred Aho, Peter Weinberger, and Brian Kernighan: AWK Charles Geschke and John Warnock: PostScript Bjarne Stroustrup: C++ Bertrand Meyer: Eiffel Brad Cox and Tom Love: Objective-C Larry Wall: Perl Simon Peyton Jones, Paul Hudak, Philip Wadler, and John Hughes: Haskell Guido van Rossum: Python Luiz Henrique de Figueiredo and Roberto Ierusalimschy: Lua James Gosling: Java Grady Booch, Ivar Jacobson, and James Rumbaugh: UML Anders Hejlsberg: Delphi inventor and lead developer of C# If you're interested in the people whose vision and hard work helped shape the computer industry, you'll find Masterminds of Programming fascinating.