Understanding Physics: Volume 1: Motion, Sound, and Heat


Isaac Asimov - 1966
    These centuries gave birth to the basic concepts from which modern physics has evolved. In this first volume of his celebrated UNDERSTANDING PHYSICS, Isaac Asimov deals with this fascinating, momentous stage of scientific development with an authority and clarity that add further lustre to an eminent reputation. Demanding the minimum of specialized knowledge from his audience, he has produced a work that is the perfect supplement to the student’s formal textbook, as well as offering invaluable illumination to the general reader.

Three Roads To Quantum Gravity


Lee Smolin - 2000
     "Provocative, original, and unsettling." -- The New York Review of Books "An excellent writer, a creative thinker." -- Nature

Introductory Astronomy and Astrophysics


Michael Zeilik - 1987
    It has an algebra and trigonometry prerequisite, but calculus is preferred.

Einstein's Universe


Nigel Calder - 1979
    It far surpasses any previous explanation of Relativity for laypersons.

Quantum Physics for Beginners: From Wave Theory to Quantum Computing. Understanding How Everything Works by a Simplified Explanation of Quantum Physics and Mechanics Principles


Carl J. Pratt - 2021
    

Stephen Hawking: A Life From Beginning to End


Hourly History - 2019
     In 1963, Stephen Hawking was diagnosed with motor neurone disease and given two years to live. More than half a century later, Hawking had made some of the most significant contributions to our understanding of the universe since Albert Einstein. The world’s most famous physics professor, a best-selling author, and a father of three, Stephen lived his life to its fullest. Bridging the world of theoretical physics with the reach of pop culture, Stephen Hawking became an emblem of human determination and intellectual curiosity. Inside you will read about... ✓ Early Life and Terminal Illness ✓ Hawking Radiation and Black Holes ✓ The Hawking Family ✓ A Gambling Man ✓ Late Life and Death And much more!

Space-time and beyond : toward an explanation of the unexplainable


Bob Toben - 1975
    Captioned cartoon drawings offering an overview of universal order as they deal with various phenomena are combined with scientific commentary

The Hunt for Vulcan: ...And How Albert Einstein Destroyed a Planet, Discovered Relativity, and Deciphered the Universe


Thomas Levenson - 2015
    November 2015 is the 100th anniversary of Einstein’s discovery of the General Theory of Relativity.Levenson, head of MIT’s Science Writing Program, tells the captivating, unusual, and nearly-forgotten backstory behind Einstein’s invention of the Theory of Relativity, which completely changed the course of science forever. For over 50 years before Einstein developed his theory, the world’s top astronomers spent countless hours and energy searching for a planet, which came to be named Vulcan, that had to exist, it was thought, given Isaac Newton’s theories of gravity. Indeed, in the two centuries since Newton’s death, his theory had essentially become accepted as fact. It took Einstein’s genius to realize the mystery of the missing planet wasn’t a problem of measurements or math but of Newton’s theory of gravity itself. Einstein’s Theory of Relativity proved that Vulcan did not and could not exist, and that the decades-long search for it had merely been a quirk of operating under the wrong set of assumptions about the universe. Thomas Levenson tells this unique story, one of the strangest episodes in the history of science, with elegant simplicity, fast-paced drama, and lively characters sure to capture the attention of a wide group of readers.

Quantum Theory


David Bohm - 1951
    Although it presents the main ideas of quantum theory essentially in nonmathematical terms, it follows these with a broad range of specific applications that are worked out in considerable mathematical detail. Addressed primarily to advanced undergraduate students, the text begins with a study of the physical formulation of the quantum theory, from its origin and early development through an analysis of wave vs. particle properties of matter. In Part II, Professor Bohm addresses the mathematical formulation of the quantum theory, examining wave functions, operators, Schrödinger's equation, fluctuations, correlations, and eigenfunctions.Part III takes up applications to simple systems and further extensions of quantum theory formulation, including matrix formulation and spin and angular momentum. Parts IV and V explore the methods of approximate solution of Schrödinger's equation and the theory of scattering. In Part VI, the process of measurement is examined along with the relationship between quantum and classical concepts.Throughout the text, Professor Bohm places strong emphasis on showing how the quantum theory can be developed in a natural way, starting from the previously existing classical theory and going step by step through the experimental facts and theoretical lines of reasoning which led to replacement of the classical theory by the quantum theory.

The Quantum World: The disturbing theory at the heart of reality (New Scientist Instant Expert)


New Scientist - 2017
    Things can exist in two places at once and travel backwards and forwards in time. Waves and particles are one and the same, and objects change their behaviour according to whether they are being watched. This is not some alternative universe but the realm of the very small, where quantum mechanics rules. In this weird world of atoms and their constituents, our common sense understanding of reality breaks down - yet quantum mechanics has never failed an experimental test. What does it all mean? For all its weirdness, quantum mechanics has given us many practical technologies including lasers and the transistors that underlie computers and all digital technology. In the future, it promises computers more powerful than any built before, the ability to communicate with absolute privacy, and even quantum teleportation. The Quantum World explores the past, present and future of quantum science, its applications and mind-bending implications. Discover how ideas from quantum mechanics are percolating out into the vast scale of the cosmos - perhaps, in the future, to reveal a new understanding of the big bang and the nature of space and time.ABOUT THE SERIESNew Scientist Instant Expert books are definitive and accessible entry points to the most important subjects in science; subjects that challenge, attract debate, invite controversy and engage the most enquiring minds. Designed for curious readers who want to know how things work and why, the Instant Expert series explores the topics that really matter and their impact on individuals, society, and the planet, translating the scientific complexities around us into language that's open to everyone, and putting new ideas and discoveries into perspective and context.

Einstein's Telescope: The Hunt for Dark Matter and Dark Energy in the Universe


Evalyn Gates - 2009
    Dark matter. These strange and invisible substances don't just sound mysterious: their unexpected appearance in the cosmic census is upending long-held notions about the nature of the Universe. Astronomers have long known that the Universe is expanding, but everything they could see indicated that gravity should be slowing this spread. Instead, it appears that the Universe is accelerating its expansion and that something stronger than gravity--dark energy--is at work. In Einstein's Telescope Evalyn Gates, a University of Chicago astrophysicist, transports us to the edge of contemporary science to explore the revolutionary tool that unlocks the secrets of these little-understood cosmic constituents. Based on Einstein's theory of general relativity, gravitational lensing, or "Einstein's Telescope," is enabling new discoveries that are taking us toward the next revolution in scientific thinking--one that may change forever our notions of where the Universe came from and where it is going.

Gravitation


Charles W. Misner - 1973
    These sections together make an appropriate one-term advanced/graduate level course (mathematical prerequisites: vector analysis and simple partial-differential equations). The book is printed to make it easy for readers to identify these sections.• The remaining Track 2 material provides a wealth of advanced topics instructors can draw from to flesh out a two-term course, with Track 1 sections serving as prerequisites.

Principles of Physics


David Halliday - 2010
    A number of the key figures in the new edition are revised to provide a more inviting and informative treatment. The figures are broken into component parts with supporting commentary so that they can more readily see the key ideas. Material from The Flying Circus is incorporated into the chapter opener puzzlers, sample problems, examples and end-of-chapter problems to make the subject more engaging. Checkpoints enable them to check their understanding of a question with some reasoning based on the narrative or sample problem they just read. Sample Problems also demonstrate how engineers can solve problems with reasoned solutions.

The Zoomable Universe: An Epic Tour Through Cosmic Scale, from Almost Everything to Nearly Nothing


Caleb Scharf - 2017
    Drawing on cutting-edge science, they begin at the limits of the observable universe, a scale spanning 10^27 meters--about 93 billion light-years. And they end in the subatomic realm, at 10^-35 meters, where the fabric of space-time itself confounds all known rules of physics. In between are galaxies, stars and planets, oceans and continents, plants and animals, microorganisms, atoms, and much, much more. Stops along the way--all enlivened by Scharf's sparkling prose and his original insights into the nature of our universe--include the brilliant core of the Milky Way, the surface of a rogue planet, the back of an elephant, and a sea of jostling quarks.The Zoomable Universe is packed with more than 100 original illustrations and infographics that will captivate readers of every age. It is a whimsical celebration of discovery, a testament to our astounding ability to see beyond our own vantage point and chart a course from the farthest reaches of the cosmos to its subatomic depths--in short, a must-have for the shelves of all explorers.

Relativity: The Special and the General Theory


Albert Einstein - 1916
    Having just completed his masterpiece, The General Theory of Relativity—which provided a brand-new theory of gravity and promised a new perspective on the cosmos as a whole—he set out at once to share his excitement with as wide a public as possible in this popular and accessible book.Here published for the first time as a Penguin Classic, this edition of Relativity features a new introduction by bestselling science author Nigel Calder.