Ejb 3 in Action


Debu Panda - 2007
    This book builds on the contributions and strengths of seminal technologies like Spring, Hibernate, and TopLink.EJB 3 is the most important innovation introduced in Java EE 5.0. EJB 3 simplifies enterprise development, abandoning the complex EJB 2.x model in favor of a lightweight POJO framework. The new API represents a fresh perspective on EJB without sacrificing the mission of enabling business application developers to create robust, scalable, standards-based solutions.EJB 3 in Action is a fast-paced tutorial, geared toward helping you learn EJB 3 and the Java Persistence API quickly and easily. For newcomers to EJB, this book provides a solid foundation in EJB. For the developer moving to EJB 3 from EJB 2, this book addresses the changes both in the EJB API and in the way the developer should approach EJB and persistence.

All of Statistics: A Concise Course in Statistical Inference


Larry Wasserman - 2003
    But in spirit, the title is apt, as the book does cover a much broader range of topics than a typical introductory book on mathematical statistics. This book is for people who want to learn probability and statistics quickly. It is suitable for graduate or advanced undergraduate students in computer science, mathematics, statistics, and related disciplines. The book includes modern topics like nonparametric curve estimation, bootstrapping, and clas- sification, topics that are usually relegated to follow-up courses. The reader is presumed to know calculus and a little linear algebra. No previous knowledge of probability and statistics is required. Statistics, data mining, and machine learning are all concerned with collecting and analyzing data. For some time, statistics research was con- ducted in statistics departments while data mining and machine learning re- search was conducted in computer science departments. Statisticians thought that computer scientists were reinventing the wheel. Computer scientists thought that statistical theory didn't apply to their problems. Things are changing. Statisticians now recognize that computer scientists are making novel contributions while computer scientists now recognize the generality of statistical theory and methodology. Clever data mining algo- rithms are more scalable than statisticians ever thought possible. Formal sta- tistical theory is more pervasive than computer scientists had realized.

Python Cookbook


David Beazley - 2002
    Packed with practical recipes written and tested with Python 3.3, this unique cookbook is for experienced Python programmers who want to focus on modern tools and idioms.Inside, you’ll find complete recipes for more than a dozen topics, covering the core Python language as well as tasks common to a wide variety of application domains. Each recipe contains code samples you can use in your projects right away, along with a discussion about how and why the solution works.Topics include:Data Structures and AlgorithmsStrings and TextNumbers, Dates, and TimesIterators and GeneratorsFiles and I/OData Encoding and ProcessingFunctionsClasses and ObjectsMetaprogrammingModules and PackagesNetwork and Web ProgrammingConcurrencyUtility Scripting and System AdministrationTesting, Debugging, and ExceptionsC Extensions

Building Cloud Apps with Microsoft Azure: Best Practices for DevOps, Data Storage, High Availability, and More (Developer Reference)


Scott Guthrie - 2014
    The patterns apply to the development process as well as to architecture and coding practices. The content is based on a presentation developed by Scott Guthrie and delivered by him at the Norwegian Developers Conference (NDC) in June of 2013 (part 1, part 2), and at Microsoft Tech Ed Australia in September 2013 (part 1, part 2). Many others updated and augmented the content while transitioning it from video to written form. Who should read this book Developers who are curious about developing for the cloud, are considering a move to the cloud, or are new to cloud development will find here a concise overview of the most important concepts and practices they need to know. The concepts are illustrated with concrete examples, and each chapter includes links to other resources that provide more in-depth information. The examples and the links to additional resources are for Microsoft frameworks and services, but the principles illustrated apply to other web development frameworks and cloud environments as well. Developers who are already developing for the cloud may find ideas here that will help make them more successful. Each chapter in the series can be read independently, so you can pick and choose topics that you're interested in. Anyone who watched Scott Guthrie's "Building Real World Cloud Apps with Windows Azure" presentation and wants more details and updated information will find that here. Assumptions This ebook expects that you have experience developing web applications by using Visual Studio and ASP.NET. Familiarity with C# would be helpful in places.

The Art of Statistics: How to Learn from Data


David Spiegelhalter - 2019
      Statistics are everywhere, as integral to science as they are to business, and in the popular media hundreds of times a day. In this age of big data, a basic grasp of statistical literacy is more important than ever if we want to separate the fact from the fiction, the ostentatious embellishments from the raw evidence -- and even more so if we hope to participate in the future, rather than being simple bystanders. In The Art of Statistics, world-renowned statistician David Spiegelhalter shows readers how to derive knowledge from raw data by focusing on the concepts and connections behind the math. Drawing on real world examples to introduce complex issues, he shows us how statistics can help us determine the luckiest passenger on the Titanic, whether a notorious serial killer could have been caught earlier, and if screening for ovarian cancer is beneficial. The Art of Statistics not only shows us how mathematicians have used statistical science to solve these problems -- it teaches us how we too can think like statisticians. We learn how to clarify our questions, assumptions, and expectations when approaching a problem, and -- perhaps even more importantly -- we learn how to responsibly interpret the answers we receive. Combining the incomparable insight of an expert with the playful enthusiasm of an aficionado, The Art of Statistics is the definitive guide to stats that every modern person needs.

Mining of Massive Datasets


Anand Rajaraman - 2011
    This book focuses on practical algorithms that have been used to solve key problems in data mining and which can be used on even the largest datasets. It begins with a discussion of the map-reduce framework, an important tool for parallelizing algorithms automatically. The authors explain the tricks of locality-sensitive hashing and stream processing algorithms for mining data that arrives too fast for exhaustive processing. The PageRank idea and related tricks for organizing the Web are covered next. Other chapters cover the problems of finding frequent itemsets and clustering. The final chapters cover two applications: recommendation systems and Web advertising, each vital in e-commerce. Written by two authorities in database and Web technologies, this book is essential reading for students and practitioners alike.

Computer Networks


Andrew S. Tanenbaum - 1981
    In this revision, the author takes a structured approach to explaining how networks function.

Cybernetics: or the Control and Communication in the Animal and the Machine


Norbert Wiener - 1948
    It is a ‘ must’ book for those in every branch of science . . . in addition, economists, politicians, statesmen, and businessmen cannot afford to overlook cybernetics and its tremendous, even terrifying implications. "It is a beautifully written book, lucid, direct, and despite its complexity, as readable by the layman as the trained scientist." -- John B. Thurston, "The Saturday Review of Literature" Acclaimed one of the "seminal books . . . comparable in ultimate importance to . . . Galileo or Malthus or Rousseau or Mill," "Cybernetics" was judged by twenty-seven historians, economists, educators, and philosophers to be one of those books published during the "past four decades", which may have a substantial impact on public thought and action in the years ahead." -- Saturday Review

R in Action


Robert Kabacoff - 2011
    The book begins by introducing the R language, including the development environment. Focusing on practical solutions, the book also offers a crash course in practical statistics and covers elegant methods for dealing with messy and incomplete data using features of R.About the TechnologyR is a powerful language for statistical computing and graphics that can handle virtually any data-crunching task. It runs on all important platforms and provides thousands of useful specialized modules and utilities. This makes R a great way to get meaningful information from mountains of raw data.About the BookR in Action is a language tutorial focused on practical problems. It presents useful statistics examples and includes elegant methods for handling messy, incomplete, and non-normal data that are difficult to analyze using traditional methods. And statistical analysis is only part of the story. You'll also master R's extensive graphical capabilities for exploring and presenting data visually. Purchase of the print book comes with an offer of a free PDF, ePub, and Kindle eBook from Manning. Also available is all code from the book. What's InsidePractical data analysis, step by stepInterfacing R with other softwareUsing R to visualize dataOver 130 graphsEight reference appendixes================================Table of ContentsPart I Getting startedIntroduction to RCreating a datasetGetting started with graphsBasic data managementAdvanced data managementPart II Basic methodsBasic graphsBasic statisticsPart III Intermediate methodsRegressionAnalysis of variancePower analysisIntermediate graphsRe-sampling statistics and bootstrappingPart IV Advanced methodsGeneralized linear modelsPrincipal components and factor analysisAdvanced methods for missing dataAdvanced graphics

The Dream Machine: J.C.R. Licklider and the Revolution That Made Computing Personal


M. Mitchell Waldrop - 2001
    C. R. Licklider, whose visionary dream of a human-computer symbiosis transformed the course of modern science and led to the development of the personal computer. Reprint.

Why Software Sucks...and What You Can Do about It


David S. Platt - 2006
    . . . Put this one on your must-have list if you have software, love software, hate programmers, or even ARE a programmer, because Mr. Platt (who teaches programming) has set out to puncture the bloated egos of all those who think that just because they can write a program, they can make it easy to use. . . . This book is funny, but it is also an important wake-up call for software companies that want to reduce the size of their customer support bills. If you were ever stuck for an answer to the question, 'Why do good programmers make such awful software?' this book holds the answer."--John McCormick, Locksmith columnist, TechRepublic.com "I must say first, I don't get many computing manuscripts that make me laugh out loud. Between the laughs, Dave Platt delivers some very interesting insight and perspective, all in a lucid and engaging style. I don't get much of that either!"--Henry Leitner, assistant dean for information technology andsenior lecturer on computer science, Harvard University "A riotous book for all of us downtrodden computer users, written in language that we understand."--Stacy Baratelli, author's barber "David's unique take on the problems that bedevil software creation made me think about the process in new ways. If you care about the quality of the software you create or use, read this book."--Dave Chappell, principal, Chappell & Associates "I began to read it in my office but stopped before I reached the bottom of the first page. I couldn't keep a grin off my face! I'll enjoy it after I go back home and find a safe place to read."--Tsukasa Makino, IT manager "David explains, in terms that my mother-in-law can understand, why the software we use today can be so frustrating, even dangerous at times, and gives us some real ideas on what we can do about it."--Jim Brosseau, Clarrus Consulting Group, Inc. A Book for Anyone Who Uses a Computer Today...and Just Wants to Scream! Today's software sucks. There's no other good way to say it. It's unsafe, allowing criminal programs to creep through the Internet wires into our very bedrooms. It's unreliable, crashing when we need it most, wiping out hours or days of work with no way to get it back. And it's hard to use, requiring large amounts of head-banging to figure out the simplest operations.It's no secret that software sucks. You know that from personal experience, whether you use computers for work or personal tasks. In this book, programming insider David Platt explains why that's the case and, more importantly, why it doesn't have to be that way. And he explains it in plain, jargon-free English that's a joy to read, using real-world examples with which you're already familiar. In the end, he suggests what you, as a typical user, without a technical background, can do about this sad state of our software--how you, as an informed consumer, don't have to take the abuse that bad software dishes out.As you might expect from the book's title, Dave's expose is laced with humor--sometimes outrageous, but always dead on. You'll laugh out loud as you recall incidents with your own software that made you cry. You'll slap your thigh with the same hand that so often pounded your computer desk and wished it was a bad programmer's face. But Dave hasn't written this book just for laughs. He's written it to give long-overdue voice to your own discovery--that software does, indeed, suck, but it shouldn't.

Numerical Recipes: The Art of Scientific Computing


William H. Press - 2007
    Widely recognized as the most comprehensive, accessible and practical basis for scientific computing, this new edition incorporates more than 400 Numerical Recipes routines, many of them new or upgraded. The executable C++ code, now printed in color for easy reading, adopts an object-oriented style particularly suited to scientific applications. The whole book is presented in the informal, easy-to-read style that made earlier editions so popular. Please visit www.nr.com or www.cambridge.org/us/numericalrecipes for more details. More information concerning licenses is available at: www.nr.com/licenses New key features: 2 new chapters, 25 new sections, 25% longer than Second Edition Thorough upgrades throughout the text Over 100 completely new routines and upgrades of many more. New Classification and Inference chapter, including Gaussian mixture models, HMMs, hierarchical clustering, Support Vector MachinesNew Computational Geometry chapter covers KD trees, quad- and octrees, Delaunay triangulation, and algorithms for lines, polygons, triangles, and spheres New sections include interior point methods for linear programming, Monte Carlo Markov Chains, spectral and pseudospectral methods for PDEs, and many new statistical distributions An expanded treatment of ODEs with completely new routines Plus comprehensive coverage of linear algebra, interpolation, special functions, random numbers, nonlinear sets of equations, optimization, eigensystems, Fourier methods and wavelets, statistical tests, ODEs and PDEs, integral equations, and inverse theory

Computers and Intractability: A Guide to the Theory of NP-Completeness


Michael R. Garey - 1979
    Johnson. It was the first book exclusively on the theory of NP-completeness and computational intractability. The book features an appendix providing a thorough compendium of NP-complete problems (which was updated in later printings of the book). The book is now outdated in some respects as it does not cover more recent development such as the PCP theorem. It is nevertheless still in print and is regarded as a classic: in a 2006 study, the CiteSeer search engine listed the book as the most cited reference in computer science literature.

Data Analysis with Open Source Tools: A Hands-On Guide for Programmers and Data Scientists


Philipp K. Janert - 2010
    With this insightful book, intermediate to experienced programmers interested in data analysis will learn techniques for working with data in a business environment. You'll learn how to look at data to discover what it contains, how to capture those ideas in conceptual models, and then feed your understanding back into the organization through business plans, metrics dashboards, and other applications.Along the way, you'll experiment with concepts through hands-on workshops at the end of each chapter. Above all, you'll learn how to think about the results you want to achieve -- rather than rely on tools to think for you.Use graphics to describe data with one, two, or dozens of variablesDevelop conceptual models using back-of-the-envelope calculations, as well asscaling and probability argumentsMine data with computationally intensive methods such as simulation and clusteringMake your conclusions understandable through reports, dashboards, and other metrics programsUnderstand financial calculations, including the time-value of moneyUse dimensionality reduction techniques or predictive analytics to conquer challenging data analysis situationsBecome familiar with different open source programming environments for data analysisFinally, a concise reference for understanding how to conquer piles of data.--Austin King, Senior Web Developer, MozillaAn indispensable text for aspiring data scientists.--Michael E. Driscoll, CEO/Founder, Dataspora

HTML5 for Masterminds: How to take advantage of HTML5 to create amazing websites and revolutionary applications


Juan Diego Gauchat