Book picks similar to
Empire of the Stars: Obsession, Friendship and Betrayal in the Quest for Black Holes by Arthur I. Miller
science
non-fiction
nonfiction
astronomy
Thirty Years that Shook Physics: The Story of Quantum Theory
George Gamow - 1966
Gamow, physicist and gifted writer, has sketched an intriguing portrait of the scientists and clashing ideas that made the quantum revolution…”—Christian Science MonitorIn 1900, German physicist Max Planck postulated that light, or radiant energy can exist only in the form of discrete packages or quanta. This profound insight, along with Einstein's equally momentous theories of relativity, completely revolutionized man's view of matter, energy, and the nature of physics itself.In this lucid layman's introduction to quantum theory, an eminent physicist and noted popularizer of science traces the development of quantum theory from the turn of the century to about 1930—from Planck's seminal concept (still developing) to anti-particles, mesons and Enrico Fermi's nuclear research. Gamow was not just a spectator at the theoretical breakthroughs which fundamentally altered our view of the universe, he was an active participant who made important contributions of his own. This “insider's” vantage point lends special validity to his careful, accessible explanation of Heisenberg's Uncertainty Principle, Neils Bohr's model of the atom, the pilot waves of Louis de Broglie and other path-breaking ideas.In addition, Gamow recounts a wealth of revealing personal anecdotes which give a warm human dimension to many giants of 20th-century physics. He end the book with the Blegdamsvej Faust, a delightful play written in 1932 by Niels Bohr's students and colleagues to satirize the epochal developments that were revolutionizing physics. This celebrated play is available only in this volume.Written in a clear, lively style, and enhanced by 12 photographs (including candid shots of Rutherford, Bohr, Pauli, Heisenberg, Fermi and other notables), Thirty Years that Shook Physics offers both scientists and laymen a highly readable introduction to the brilliant conception that helped unlock many secrets of energy and matter and laid the groundwork for future discoveries.(Back Cover)
Stephen Hawking's Universe: The Cosmos Explained
David Filkin - 1997
Now, in everyday language, Stephen Hawking's Universe reveals step-by-step how we can all share his understanding of the cosmos, and our own place within it. Stargazing has never been the same since cosmologists discovered that galaxies are moving away from each other at an extraordinary speed. It was this understanding of the movement of galaxies that allowed scientists to develop a theory of how the universe was created—the Big Bang theory. Working with this theory, Stephen Hawking and other physicists felt challenged to come up with a scientific picture that would tackle the fundamental question: what is the nature of the universe? Stephen Hawking's Universe charts this work and provides simple explanations for phenomena that arouse our curiosity. This work is a voyage of discovery with an astonishing set of conclusions that will enable us to understand how matter can be produced from nothing at all and will provide us with an explanation for the basis of our existence and that of everything around us.
"Surely You're Joking, Mr. Feynman!": Adventures of a Curious Character
Richard P. Feynman - 1985
Here he recounts in his inimitable voice his experience trading ideas on atomic physics with Einstein and Bohr and ideas on gambling with Nick the Greek; cracking the uncrackable safes guarding the most deeply held nuclear secrets; accompanying a ballet on his bongo drums; painting a naked female toreador. In short, here is Feynman's life in all its eccentric—a combustible mixture of high intelligence, unlimited curiosity, and raging chutzpah.
The Perfect Machine: Building the Palomar Telescope
Ronald Florence - 1994
As huge as the Pantheon of Rome and as heavy as the Statue of Liberty, this magnificent instrument is so precisely built that its seventeen-foot mirror was hand-polished to a tolerance of 2/1,000,000 of an inch. The telescope's construction drove some to the brink of madness, made others fearful that mortals might glimpse heaven, and transfixed an entire nation. Ronald Florence weaves into his account of the creation of "the perfect machine" a stirring chronicle of the birth of Big Science and a poignant rendering of an America mired in the depression yet reaching for the stars.
Brilliant Blunders: From Darwin to Einstein - Colossal Mistakes by Great Scientists That Changed Our Understanding of Life and the Universe
Mario Livio - 2013
Nobody is perfect. And that includes five of the greatest scientists in history—Charles Darwin, William Thomson (Lord Kelvin), Linus Pauling, Fred Hoyle, and Albert Einstein. But the mistakes that these great luminaries made helped advance science. Indeed, as Mario Livio explains, science thrives on error, advancing when erroneous ideas are disproven.As a young scientist, Einstein tried to conceive of a way to describe the evolution of the universe at large, based on General Relativity—his theory of space, time, and gravity. Unfortunately he fell victim to a misguided notion of aesthetic simplicity. Fred Hoyle was an eminent astrophysicist who ridiculed an emerging theory about the origin of the universe that he dismissively called “The Big Bang.” The name stuck, but Hoyle was dead wrong in his opposition.They, along with Darwin (a blunder in his theory of Natural Selection), Kelvin (a blunder in his calculation of the age of the earth), and Pauling (a blunder in his model for the structure of the DNA molecule), were brilliant men and fascinating human beings. Their blunders were a necessary part of the scientific process. Collectively they helped to dramatically further our knowledge of the evolution of life, the Earth, and the universe.
In Search of Schrödinger's Cat: Quantum Physics and Reality
John Gribbin - 1984
It is so important that it provides the fundamental underpinning of all modern sciences. Without it, we'd have no nuclear power or nuclear bombs, no lasers, no TV, no computers, no science of molecular biology, no understanding of DNA, no genetic engineering—at all. John Gribbin tells the complete story of quantum mechanics, a truth far stranger than any fiction. He takes us step-by-step into an ever more bizarre and fascinating place—requiring only that we approach it with an open mind. He introduces the scientists who developed quantum theory. He investigates the atom, radiation, time travel, the birth of the universe, superconductors and life itself. And in a world full of its own delights, mysteries and surprises, he searches for Schrödinger's Cat—a search for quantum reality—as he brings every reader to a clear understanding of the most important area of scientific study today—quantum physics.
The Universe Within: Discovering the Common History of Rocks, Planets, and People
Neil Shubin - 2013
Starting once again with fossils, he turns his gaze skyward, showing us how the entirety of the universe’s fourteen-billion-year history can be seen in our bodies. As he moves from our very molecular composition (a result of stellar events at the origin of our solar system) through the workings of our eyes, Shubin makes clear how the evolution of the cosmos has profoundly marked our own bodies. Fully illustrated with black and white drawings.
Just Six Numbers: The Deep Forces That Shape the Universe
Martin J. Rees - 1999
There are deep connections between stars and atoms, between the cosmos and the microworld. Just six numbers, imprinted in the "big bang," determine the essential features of our entire physical world. Moreover, cosmic evolution is astonishingly sensitive to the values of these numbers. If any one of them were "untuned," there could be no stars and no life. This realization offers a radically new perspective on our universe, our place in it, and the nature of physical laws.
Einstein's Dice and Schrödinger's Cat: How Two Great Minds Battled Quantum Randomness to Create a Unified Theory of Physics
Paul Halpern - 2015
Einstein famously quipped that God does not play dice with the universe, and Schrödinger is equally well known for his thought experiment about the cat in the box who ends up “spread out” in a probabilistic state, neither wholly alive nor wholly dead. Both of these famous images arose from these two men’s dissatisfaction with quantum weirdness and with their assertion that underneath it all, there must be some essentially deterministic world. Even though it was Einstein’s own theories that made quantum mechanics possible, both he and Schrödinger could not bear the idea that the universe was, at its most fundamental level, random.As the Second World War raged, both men struggled to produce a theory that would describe in full the universe’s ultimate design, first as collaborators, then as competitors. They both ultimately failed in their search for a Grand Unified Theory—not only because quantum mechanics is true, but because Einstein and Schrödinger were also missing a key component: of the four forces we recognize today (gravity, electromagnetism, the weak force, and the strong force), only gravity and electromagnetism were known at the time.Despite their failures, though, much of modern physics remains focused on the search for a Grand Unified Theory. As Halpern explains, the recent discovery of the Higgs Boson makes the Standard Model—the closest thing we have to a unified theory—nearly complete. And while Einstein and Schrödinger tried and failed to explain everything in the cosmos through pure geometry, the development of string theory has, in its own quantum way, brought this idea back into vogue. As in so many things, even when he was wrong, Einstein couldn’t help but be right.
Archimedes to Hawking: Laws of Science and the Great Minds Behind Them
Clifford A. Pickover - 2008
Throughout this fascinating book, Clifford Pickover invites us to share in the amazing adventures of brilliant, quirky, and passionate people after whom these laws are named. These lawgivers turn out to be a fascinating, diverse, and sometimes eccentric group of people. Many were extremely versatile polymaths--human dynamos with a seemingly infinite supply of curiosity and energy and who worked in many different areas in science. Others had non-conventional educations and displayed their unusual talents from an early age. Some experienced resistance to their ideas, causing significant personal anguish. Pickover examines more than 40 great laws, providing brief and cogent introductions to the science behind the laws as well as engaging biographies of such scientists as Newton, Faraday, Ohm, Curie, and Planck. Throughout, he includes fascinating, little-known tidbits relating to the law or lawgiver, and he provides cross-references to other laws or equations mentioned in the book. For several entries, he includes simple numerical examples and solved problems so that readers can have a hands-on understanding of the application of the law. A sweeping survey of scientific discovery as well as an intriguing portrait gallery of some of the greatest minds in history, this superb volume will engage everyone interested in science and the physical world or in the dazzling creativity of these brilliant thinkers.
E=mc²: A Biography of the World's Most Famous Equation
David Bodanis - 2000
Just about everyone has at least heard of Albert Einstein's formulation of 1905, which came into the world as something of an afterthought. But far fewer can explain his insightful linkage of energy to mass. David Bodanis offers an easily grasped gloss on the equation. Mass, he writes, "is simply the ultimate type of condensed or concentrated energy," whereas energy "is what billows out as an alternate form of mass under the right circumstances." Just what those circumstances are occupies much of Bodanis's book, which pays homage to Einstein and, just as important, to predecessors such as Maxwell, Faraday, and Lavoisier, who are not as well known as Einstein today. Balancing writerly energy and scholarly weight, Bodanis offers a primer in modern physics and cosmology, explaining that the universe today is an expression of mass that will, in some vastly distant future, one day slide back to the energy side of the equation, replacing the "dominion of matter" with "a great stillness"--a vision that is at once lovely and profoundly frightening. Without sliding into easy psychobiography, Bodanis explores other circumstances as well; namely, Einstein's background and character, which combined with a sterling intelligence to afford him an idiosyncratic view of the way things work--a view that would change the world. --Gregory McNamee
Subtle Is the Lord: The Science and the Life of Albert Einstein
Abraham Pais - 1982
In this new major work Abraham Pais, himself an eminent physicist who worked alongside Einstein in the post-war years, traces the development of Einstein's entire oeuvre. This is the first book which deal comprehensively and in depth with Einstein's science, both the successes and the failures.Running through the book is a completely non-scientific biography (identified in the table of contents by italic type) including many letters which appear in English for the first time, as well as other information not published before.Throughout the preparation of this book, Pais has had complete access to the Einstein Archives (now in the possession of the Hebrew University) and the invaluable guidance of the late Helen Dukas--formerly Einstein's private secretary.
The Disappearing Spoon: And Other True Tales of Madness, Love, and the History of the World from the Periodic Table of the Elements
Sam Kean - 2010
The fascinating tales in The Disappearing Spoon follow carbon, neon, silicon, gold and every single element on the table as they play out their parts in human history, finance, mythology, conflict, the arts, medicine and the lives of the (frequently) mad scientists who discovered them.Why did a little lithium (Li, 3) help cure poet Robert Lowell of his madness? And how did gallium (Ga, 31) become the go-to element for laboratory pranksters? The Disappearing Spoon has the answers, fusing science with the classic lore of invention, investigation, discovery and alchemy, from the big bang through to the end of time.
The Information: A History, a Theory, a Flood
James Gleick - 2011
The story of information begins in a time profoundly unlike our own, when every thought and utterance vanishes as soon as it is born. From the invention of scripts and alphabets to the long-misunderstood talking drums of Africa, Gleick tells the story of information technologies that changed the very nature of human consciousness. He provides portraits of the key figures contributing to the inexorable development of our modern understanding of information: Charles Babbage, the idiosyncratic inventor of the first great mechanical computer; Ada Byron, the brilliant and doomed daughter of the poet, who became the first true programmer; pivotal figures like Samuel Morse and Alan Turing; and Claude Shannon, the creator of information theory itself. And then the information age arrives. Citizens of this world become experts willy-nilly: aficionados of bits and bytes. And we sometimes feel we are drowning, swept by a deluge of signs and signals, news and images, blogs and tweets. The Information is the story of how we got here and where we are heading.
The Interstellar Age: Inside the Forty-Year Voyager Mission
Jim Bell - 2015
The fantastic journey began in 1977, before the first episode of Cosmos aired. The mission was planned as a grand tour beyond the moon; beyond Mars, Jupiter, and Saturn; and maybe even into interstellar space. The fact that it actually happened makes this humanity's greatest space mission.In The Interstellar Age, award-winning planetary scientist Jim Bell reveals what drove and continues to drive the members of this extraordinary team, including Ed Stone, Voyager's chief scientist and the one-time head of NASA's Jet Propulsion Lab; Charley Kohlhase, an orbital dynamics engineer who helped to design many of the critical slingshot maneuvers around planets that enabled the Voyagers to travel so far; and the geologist whose Earth-bound experience would prove of little help in interpreting the strange new landscapes revealed in the Voyagers' astoundingly clear images of moons and planets.Speeding through space at a mind-bending eleven miles a second, Voyager 1 is now beyond our solar system's planets. It carries with it artifacts of human civilization. By the time Voyager passes its first star in about 40,000 years, the gold record on the spacecraft, containing various music and images including Chuck Berry's "Johnny B. Goode," will still be playable.