Natural Language Processing with Python


Steven Bird - 2009
    With it, you'll learn how to write Python programs that work with large collections of unstructured text. You'll access richly annotated datasets using a comprehensive range of linguistic data structures, and you'll understand the main algorithms for analyzing the content and structure of written communication.Packed with examples and exercises, Natural Language Processing with Python will help you: Extract information from unstructured text, either to guess the topic or identify "named entities" Analyze linguistic structure in text, including parsing and semantic analysis Access popular linguistic databases, including WordNet and treebanks Integrate techniques drawn from fields as diverse as linguistics and artificial intelligenceThis book will help you gain practical skills in natural language processing using the Python programming language and the Natural Language Toolkit (NLTK) open source library. If you're interested in developing web applications, analyzing multilingual news sources, or documenting endangered languages -- or if you're simply curious to have a programmer's perspective on how human language works -- you'll find Natural Language Processing with Python both fascinating and immensely useful.

Streaming Systems


Tyler Akidau - 2018
    As more and more businesses seek to tame the massive unbounded data sets that pervade our world, streaming systems have finally reached a level of maturity sufficient for mainstream adoption. With this practical guide, data engineers, data scientists, and developers will learn how to work with streaming data in a conceptual and platform-agnostic way.Expanded from Tyler Akidau's popular blog posts Streaming 101 and Streaming 102, this book takes you from an introductory level to a nuanced understanding of the what, where, when, and how of processing real-time data streams. You'll also dive deep into watermarks and exactly-once processing with co-authors Slava Chernyak and Reuven Lax.You'll explore:How streaming and batch data processing patterns compareThe core principles and concepts behind robust out-of-order data processingHow watermarks track progress and completeness in infinite datasetsHow exactly-once data processing techniques ensure correctnessHow the concepts of streams and tables form the foundations of both batch and streaming data processingThe practical motivations behind a powerful persistent state mechanism, driven by a real-world exampleHow time-varying relations provide a link between stream processing and the world of SQL and relational algebra

Absolute Freebsd: The Complete Guide to Freebsd


Michael W. Lucas - 2007
    But it can be even trickier to use than either Unix or Linux, and harder still to master.Absolute FreeBSD, 2nd Edition is your complete guide to FreeBSD, written by FreeBSD committer Michael W. Lucas. Lucas considers this completely revised and rewritten second edition of his landmark work to be his best work ever; a true product of his love for FreeBSD and the support of the FreeBSD community. Absolute FreeBSD, 2nd Edition covers installation, networking, security, network services, system performance, kernel tweaking, filesystems, SMP, upgrading, crash debugging, and much more, including coverage of how to:Use advanced security features like packet filtering, virtual machines, and host-based intrusion detection Build custom live FreeBSD CDs and bootable flash Manage network services and filesystems Use DNS and set up email, IMAP, web, and FTP services for both servers and clients Monitor your system with performance-testing and troubleshooting tools Run diskless systems Manage schedulers, remap shared libraries, and optimize your system for your hardware and your workload Build custom network appliances with embedded FreeBSD Implement redundant disks, even without special hardware Integrate FreeBSD-specific SNMP into your network management system. Whether you're just getting started with FreeBSD or you've been using it for years, you'll find this book to be the definitive guide to FreeBSD that you've been waiting for.

Machine Learning for Hackers


Drew Conway - 2012
    Authors Drew Conway and John Myles White help you understand machine learning and statistics tools through a series of hands-on case studies, instead of a traditional math-heavy presentation.Each chapter focuses on a specific problem in machine learning, such as classification, prediction, optimization, and recommendation. Using the R programming language, you'll learn how to analyze sample datasets and write simple machine learning algorithms. "Machine Learning for Hackers" is ideal for programmers from any background, including business, government, and academic research.Develop a naive Bayesian classifier to determine if an email is spam, based only on its textUse linear regression to predict the number of page views for the top 1,000 websitesLearn optimization techniques by attempting to break a simple letter cipherCompare and contrast U.S. Senators statistically, based on their voting recordsBuild a "whom to follow" recommendation system from Twitter data

Grokking Deep Learning


Andrew W. Trask - 2017
    Loosely based on neuron behavior inside of human brains, these systems are rapidly catching up with the intelligence of their human creators, defeating the world champion Go player, achieving superhuman performance on video games, driving cars, translating languages, and sometimes even helping law enforcement fight crime. Deep Learning is a revolution that is changing every industry across the globe.Grokking Deep Learning is the perfect place to begin your deep learning journey. Rather than just learn the “black box” API of some library or framework, you will actually understand how to build these algorithms completely from scratch. You will understand how Deep Learning is able to learn at levels greater than humans. You will be able to understand the “brain” behind state-of-the-art Artificial Intelligence. Furthermore, unlike other courses that assume advanced knowledge of Calculus and leverage complex mathematical notation, if you’re a Python hacker who passed high-school algebra, you’re ready to go. And at the end, you’ll even build an A.I. that will learn to defeat you in a classic Atari game.

Prometheus: Up & Running: Infrastructure and Application Performance Monitoring


Brian Brazil - 2018
    This practical guide provides application developers, sysadmins, and DevOps practitioners with a hands-on introduction to the most important aspects of Prometheus, including dashboarding and alerting, direct code instrumentation, and metric collection from third-party systems with exporters.This open source system has gained popularity over the past few years for good reason. With its simple yet powerful data model and query language, Prometheus does one thing, and it does it well. Author and Prometheus developer Brian Brazil guides you through Prometheus setup, the Node exporter, and the Alertmanager, then demonstrates how to use them for application and infrastructure monitoring.Know where and how much to apply instrumentation to your application codeIdentify metrics with labels using unique key-value pairsGet an introduction to Grafana, a popular tool for building dashboardsLearn how to use the Node Exporter to monitor your infrastructureUse service discovery to provide different views of your machines and servicesUse Prometheus with Kubernetes and examine exporters you can use with containersConvert data from other monitoring systems into the Prometheus format

Head First JavaScript Programming


Eric Freeman - 2014
    Want to understand that code you've been copying and pasting into your web pages? And do it in a way that won't put you to sleep? Then Head First JavaScript Programming is for you. Learning a programming language is no easy task, but Head First JavaScript Programming uses puzzles, visuals, mysteries, interviews, and fun examples to make learning JavaScript fast, fun, and effective. But don't be fooled; you might be having a good time while you're learning JavaScript, but you're still learning all the serious stuff. Like how functions and objects work, what a callback is, how to interact with the web page using the Document Object Model, how to use arrays, and even what a closure is. JavaScript is one of the most popular languages in the world, and it's only getting more popular as the Web continues to grow. Learn JavaScript the Head First way, and get in on all the action.

Git Pocket Guide


Richard E. Silverman - 2013
    It provides a compact, readable introduction to Git for new users, as well as a reference to common commands and procedures for those of you with Git experience.Written for Git version 1.8.2, this handy task-oriented guide is organized around the basic version control functions you need, such as making commits, fixing mistakes, merging, and searching history.Examine the state of your project at earlier points in timeLearn the basics of creating and making changes to a repositoryCreate branches so many people can work on a project simultaneouslyMerge branches and reconcile the changes among themClone an existing repository and share changes with push/pull commandsExamine and change your repository’s commit historyAccess remote repositories, using different network protocolsGet recipes for accomplishing a variety of common tasks

OS X 10.10 Yosemite: The Ars Technica Review


John Siracusa - 2014
    Siracusa's overview, wrap-up, and critique of everything new in OS X 10.10 Yosemite.

Machine Learning: An Algorithmic Perspective


Stephen Marsland - 2009
    The field is ready for a text that not only demonstrates how to use the algorithms that make up machine learning methods, but also provides the background needed to understand how and why these algorithms work. Machine Learning: An Algorithmic Perspective is that text.Theory Backed up by Practical ExamplesThe book covers neural networks, graphical models, reinforcement learning, evolutionary algorithms, dimensionality reduction methods, and the important area of optimization. It treads the fine line between adequate academic rigor and overwhelming students with equations and mathematical concepts. The author addresses the topics in a practical way while providing complete information and references where other expositions can be found. He includes examples based on widely available datasets and practical and theoretical problems to test understanding and application of the material. The book describes algorithms with code examples backed up by a website that provides working implementations in Python. The author uses data from a variety of applications to demonstrate the methods and includes practical problems for students to solve.Highlights a Range of Disciplines and ApplicationsDrawing from computer science, statistics, mathematics, and engineering, the multidisciplinary nature of machine learning is underscored by its applicability to areas ranging from finance to biology and medicine to physics and chemistry. Written in an easily accessible style, this book bridges the gaps between disciplines, providing the ideal blend of theory and practical, applicable knowledge."

PHP Cookbook


David Sklar - 2002
    With our Cookbook's unique format, you can learn how to build dynamic web applications that work on any web browser. This revised new edition makes it easy to find specific solutions for programming challenges.PHP Cookbook has a wealth of solutions for problems that you'll face regularly. With topics that range from beginner questions to advanced web programming techniques, this guide contains practical examples -- or "recipes" -- for anyone who uses this scripting language to generate dynamic web content. Updated for PHP 5, this book provides solutions that explain how to use the new language features in detail, including the vastly improved object-oriented capabilities and the new PDO data access extension. New sections on classes and objects are included, along with new material on processing XML, building web services with PHP, and working with SOAP/REST architectures. With each recipe, the authors include a discussion that explains the logic and concepts underlying the solution.

R in a Nutshell: A Desktop Quick Reference


Joseph Adler - 2009
    R in a Nutshell provides a quick and practical way to learn this increasingly popular open source language and environment. You'll not only learn how to program in R, but also how to find the right user-contributed R packages for statistical modeling, visualization, and bioinformatics.The author introduces you to the R environment, including the R graphical user interface and console, and takes you through the fundamentals of the object-oriented R language. Then, through a variety of practical examples from medicine, business, and sports, you'll learn how you can use this remarkable tool to solve your own data analysis problems.Understand the basics of the language, including the nature of R objectsLearn how to write R functions and build your own packagesWork with data through visualization, statistical analysis, and other methodsExplore the wealth of packages contributed by the R communityBecome familiar with the lattice graphics package for high-level data visualizationLearn about bioinformatics packages provided by Bioconductor"I am excited about this book. R in a Nutshell is a great introduction to R, as well as a comprehensive reference for using R in data analytics and visualization. Adler provides 'real world' examples, practical advice, and scripts, making it accessible to anyone working with data, not just professional statisticians."

Bayesian Methods for Hackers: Probabilistic Programming and Bayesian Inference


Cameron Davidson-Pilon - 2014
    However, most discussions of Bayesian inference rely on intensely complex mathematical analyses and artificial examples, making it inaccessible to anyone without a strong mathematical background. Now, though, Cameron Davidson-Pilon introduces Bayesian inference from a computational perspective, bridging theory to practice-freeing you to get results using computing power. Bayesian Methods for Hackers illuminates Bayesian inference through probabilistic programming with the powerful PyMC language and the closely related Python tools NumPy, SciPy, and Matplotlib. Using this approach, you can reach effective solutions in small increments, without extensive mathematical intervention. Davidson-Pilon begins by introducing the concepts underlying Bayesian inference, comparing it with other techniques and guiding you through building and training your first Bayesian model. Next, he introduces PyMC through a series of detailed examples and intuitive explanations that have been refined after extensive user feedback. You'll learn how to use the Markov Chain Monte Carlo algorithm, choose appropriate sample sizes and priors, work with loss functions, and apply Bayesian inference in domains ranging from finance to marketing. Once you've mastered these techniques, you'll constantly turn to this guide for the working PyMC code you need to jumpstart future projects. Coverage includes - Learning the Bayesian "state of mind" and its practical implications - Understanding how computers perform Bayesian inference - Using the PyMC Python library to program Bayesian analyses - Building and debugging models with PyMC - Testing your model's "goodness of fit" - Opening the "black box" of the Markov Chain Monte Carlo algorithm to see how and why it works - Leveraging the power of the "Law of Large Numbers" - Mastering key concepts, such as clustering, convergence, autocorrelation, and thinning - Using loss functions to measure an estimate's weaknesses based on your goals and desired outcomes - Selecting appropriate priors and understanding how their influence changes with dataset size - Overcoming the "exploration versus exploitation" dilemma: deciding when "pretty good" is good enough - Using Bayesian inference to improve A/B testing - Solving data science problems when only small amounts of data are available Cameron Davidson-Pilon has worked in many areas of applied mathematics, from the evolutionary dynamics of genes and diseases to stochastic modeling of financial prices. His contributions to the open source community include lifelines, an implementation of survival analysis in Python. Educated at the University of Waterloo and at the Independent University of Moscow, he currently works with the online commerce leader Shopify.

Computer Vision: Algorithms and Applications


Richard Szeliski - 2010
    However, despite all of the recent advances in computer vision research, the dream of having a computer interpret an image at the same level as a two-year old remains elusive. Why is computer vision such a challenging problem and what is the current state of the art?Computer Vision: Algorithms and Applications explores the variety of techniques commonly used to analyze and interpret images. It also describes challenging real-world applications where vision is being successfully used, both for specialized applications such as medical imaging, and for fun, consumer-level tasks such as image editing and stitching, which students can apply to their own personal photos and videos.More than just a source of "recipes," this exceptionally authoritative and comprehensive textbook/reference also takes a scientific approach to basic vision problems, formulating physical models of the imaging process before inverting them to produce descriptions of a scene. These problems are also analyzed using statistical models and solved using rigorous engineering techniquesTopics and features: Structured to support active curricula and project-oriented courses, with tips in the Introduction for using the book in a variety of customized courses Presents exercises at the end of each chapter with a heavy emphasis on testing algorithms and containing numerous suggestions for small mid-term projects Provides additional material and more detailed mathematical topics in the Appendices, which cover linear algebra, numerical techniques, and Bayesian estimation theory Suggests additional reading at the end of each chapter, including the latest research in each sub-field, in addition to a full Bibliography at the end of the book Supplies supplementary course material for students at the associated website, http: //szeliski.org/Book/ Suitable for an upper-level undergraduate or graduate-level course in computer science or engineering, this textbook focuses on basic techniques that work under real-world conditions and encourages students to push their creative boundaries. Its design and exposition also make it eminently suitable as a unique reference to the fundamental techniques and current research literature in computer vision.

Introducing Ethereum and Solidity: Foundations of Cryptocurrency and Blockchain Programming for Beginners


Chris Dannen - 2017
    Blockchain protocols are taking the world by storm, and the Ethereum project, with its Turing-complete scripting language Solidity, has rapidly become a front-runner. This book presents the blockchain phenomenon in context; then situates Ethereum in a world pioneered by Bitcoin.See why professionals and non-professionals alike are honing their skills in smart contract patterns and distributed application development. You'll review the fundamentals of programming and networking, alongside its introduction to the new discipline of crypto-economics. You'll then deploy smart contracts of your own, and learn how they can serve as a back-end for JavaScript and HTML applications on the Web.Many Solidity tutorials out there today have the same flaw: they are written for "advanced" JavaScript developers who want to transfer their skills to a blockchain environment. Introducing Ethereum and Solidity is accessible to technology professionals and enthusiasts of all levels. You'll find exciting sample code that can move forward real world assets in both the academic and the corporate arenas. Find out now why this book is a powerful gateway for creative technologists of all types, from concept to deployment.What You'll LearnSee how Ethereum (and other cryptocurrencies) workCompare distributed apps (dapps) to web appsWrite Ethereum smart contracts in Solidity Connect Ethereum smart contracts to your HTML/CSS/JavaScript web applicationsDeploy your own dapp, coin, and blockchainWork with basic and intermediate smart contractsWho This Book Is For Anyone who is curious about Ethereum or has some familiarity with computer science Product managers, CTOs, and experienced JavaScript programmersExperts will find the advanced sample projects in this book rewarding because of the power of Solidity