Book picks similar to
Python for Finance: Analyze Big Financial Data by Yves Hilpisch
finance
programming
python
data-science
Pattern Recognition and Machine Learning
Christopher M. Bishop - 2006
However, these activities can be viewed as two facets of the same field, and together they have undergone substantial development over the past ten years. In particular, Bayesian methods have grown from a specialist niche to become mainstream, while graphical models have emerged as a general framework for describing and applying probabilistic models. Also, the practical applicability of Bayesian methods has been greatly enhanced through the development of a range of approximate inference algorithms such as variational Bayes and expectation propagation. Similarly, new models based on kernels have had a significant impact on both algorithms and applications. This new textbook reflects these recent developments while providing a comprehensive introduction to the fields of pattern recognition and machine learning. It is aimed at advanced undergraduates or first-year PhD students, as well as researchers and practitioners, and assumes no previous knowledge of pattern recognition or machine learning concepts. Knowledge of multivariate calculus and basic linear algebra is required, and some familiarity with probabilities would be helpful though not essential as the book includes a self-contained introduction to basic probability theory.
Pro Git
Scott Chacon - 2009
It took the open source world by storm since its inception in 2005, and is used by small development shops and giants like Google, Red Hat, and IBM, and of course many open source projects.A book by Git experts to turn you into a Git expert. Introduces the world of distributed version control Shows how to build a Git development workflow.
Data Mining: Practical Machine Learning Tools and Techniques
Ian H. Witten - 1999
This highly anticipated fourth edition of the most ...Download Link : readmeaway.com/download?i=0128042915 0128042915 Data Mining: Practical Machine Learning Tools and Techniques (Morgan Kaufmann Series in Data Management Systems) PDF by Ian H. WittenRead Data Mining: Practical Machine Learning Tools and Techniques (Morgan Kaufmann Series in Data Management Systems) PDF from Morgan Kaufmann,Ian H. WittenDownload Ian H. Witten's PDF E-book Data Mining: Practical Machine Learning Tools and Techniques (Morgan Kaufmann Series in Data Management Systems)
Cracking the Coding Interview: 150 Programming Questions and Solutions
Gayle Laakmann McDowell - 2008
This is a deeply technical book and focuses on the software engineering skills to ace your interview. The book is over 500 pages and includes 150 programming interview questions and answers, as well as other advice.The full list of topics are as follows:The Interview ProcessThis section offers an overview on questions are selected and how you will be evaluated. What happens when you get a question wrong? When should you start preparing, and how? What language should you use? All these questions and more are answered.Behind the ScenesLearn what happens behind the scenes during your interview, how decisions really get made, who you interview with, and what they ask you. Companies covered include Google, Amazon, Yahoo, Microsoft, Apple and Facebook.Special SituationsThis section explains the process for experience candidates, Program Managers, Dev Managers, Testers / SDETs, and more. Learn what your interviewers are looking for and how much code you need to know.Before the InterviewIn order to ace the interview, you first need to get an interview. This section describes what a software engineer's resume should look like and what you should be doing well before your interview.Behavioral PreparationAlthough most of a software engineering interview will be technical, behavioral questions matter too. This section covers how to prepare for behavioral questions and how to give strong, structured responses.Technical Questions (+ 5 Algorithm Approaches)This section covers how to prepare for technical questions (without wasting your time) and teaches actionable ways to solve the trickiest algorithm problems. It also teaches you what exactly "good coding" is when it comes to an interview.150 Programming Questions and AnswersThis section forms the bulk of the book. Each section opens with a discussion of the core knowledge and strategies to tackle this type of question, diving into exactly how you break down and solve it. Topics covered include• Arrays and Strings• Linked Lists• Stacks and Queues• Trees and Graphs• Bit Manipulation• Brain Teasers• Mathematics and Probability• Object-Oriented Design• Recursion and Dynamic Programming• Sorting and Searching• Scalability and Memory Limits• Testing• C and C++• Java• Databases• Threads and LocksFor the widest degree of readability, the solutions are almost entirely written with Java (with the exception of C / C++ questions). A link is provided with the book so that you can download, compile, and play with the solutions yourself.Changes from the Fourth Edition: The fifth edition includes over 200 pages of new content, bringing the book from 300 pages to over 500 pages. Major revisions were done to almost every solution, including a number of alternate solutions added. The introductory chapters were massively expanded, as were the opening of each of the chapters under Technical Questions. In addition, 24 new questions were added.Cracking the Coding Interview, Fifth Edition is the most expansive, detailed guide on how to ace your software development / programming interviews.
Python Testing with Pytest: Simple, Rapid, Effective, and Scalable
Brian Okken - 2017
The pytest testing framework helps you write tests quickly and keep them readable and maintainable - with no boilerplate code. Using a robust yet simple fixture model, it's just as easy to write small tests with pytest as it is to scale up to complex functional testing for applications, packages, and libraries. This book shows you how.For Python-based projects, pytest is the undeniable choice to test your code if you're looking for a full-featured, API-independent, flexible, and extensible testing framework. With a full-bodied fixture model that is unmatched in any other tool, the pytest framework gives you powerful features such as assert rewriting and plug-in capability - with no boilerplate code.With simple step-by-step instructions and sample code, this book gets you up to speed quickly on this easy-to-learn and robust tool. Write short, maintainable tests that elegantly express what you're testing. Add powerful testing features and still speed up test times by distributing tests across multiple processors and running tests in parallel. Use the built-in assert statements to reduce false test failures by separating setup and test failures. Test error conditions and corner cases with expected exception testing, and use one test to run many test cases with parameterized testing. Extend pytest with plugins, connect it to continuous integration systems, and use it in tandem with tox, mock, coverage, unittest, and doctest.Write simple, maintainable tests that elegantly express what you're testing and why.What You Need: The examples in this book are written using Python 3.6 and pytest 3.0. However, pytest 3.0 supports Python 2.6, 2.7, and Python 3.3-3.6.
Inside the Black Box: The Simple Truth about Quantitative Trading
Rishi K. Narang - 2009
His explanation and classification of alpha will enlighten even a seasoned veteran." ?Blair Hull, Founder, Hull Trading & Matlock Trading"Rishi provides a comprehensive overview of quantitative investing that should prove useful both to those allocating money to quant strategies and those interested in becoming quants themselves. Rishi's experience as a well-respected quant fund of funds manager and his solid relationships with many practitioners provide ample useful material for his work." ?Peter Muller, Head of Process Driven Trading, Morgan Stanley"A very readable book bringing much needed insight into a subject matter that is not often covered. Provides a framework and guidance that should be valuable to both existing investors and those looking to invest in this area for the first time. Many quants should also benefit from reading this book." ?Steve Evans, Managing Director of Quantitative Trading, Tudor Investment Corporation"Without complex formulae, Narang, himself a leading practitioner, provides an insightful taxonomy of systematic trading strategies in liquid instruments and a framework for considering quantitative strategies within a portfolio. This guide enables an investor to cut through the hype and pretense of secrecy surrounding quantitative strategies." ?Ross Garon, Managing Director, Quantitative Strategies, S.A.C. Capital Advisors, L.P."Inside the Black Box is a comprehensive, yet easy read. Rishi Narang provides a simple framework for understanding quantitative money management and proves that it is not a black box but rather a glass box for those inside." ?Jean-Pierre Aguilar, former founder and CEO, Capital Fund Management"This book is great for anyone who wants to understand quant trading, without digging in to the equations. It explains the subject in intuitive, economic terms." ?Steven Drobny, founder, Drobny Global Asset Management, and author, Inside the House of Money"Rishi Narang does an excellent job demystifying how quants work, in an accessible and fun read. This book should occupy a key spot on anyone's bookshelf who is interested in understanding how this ever increasing part of the investment universe actually operates."?Matthew S. Rothman, PhD, Global Head of Quantitative Equity Strategies Barclays Capital"Inside the Black Box provides a comprehensive and intuitive introduction to "quant" strategies. It succinctly explains the building blocks of such strategies and how they fit together, while conveying the myriad possibilities and design details it takes to build a successful model driven investment strategy." ?Asriel Levin, PhD, Managing Member, Menta Capital, LLC
Options, Futures and Other Derivatives
John C. Hull
Changes in the fifth edition include: A new chapter on credit derivatives (Chapter 21). New! Business Snapshots highlight real-world situations and relevant issues. The first six chapters have been -reorganized to better meet the needs of students and .instructors. A new release of the Excel-based software, DerivaGem, is included with each text. A useful Solutions Manual/Study Guide, which includes the worked-out answers to the "Questions and Problems" sections of each chapter, can be purchased separately (ISBN: 0-13-144570-7).
Applied Cryptography: Protocols, Algorithms, and Source Code in C
Bruce Schneier - 1993
… The book the National Security Agency wanted never to be published." –Wired Magazine "…monumental… fascinating… comprehensive… the definitive work on cryptography for computer programmers…" –Dr. Dobb's Journal"…easily ranks as one of the most authoritative in its field." —PC Magazine"…the bible of code hackers." –The Millennium Whole Earth CatalogThis new edition of the cryptography classic provides you with a comprehensive survey of modern cryptography. The book details how programmers and electronic communications professionals can use cryptography—the technique of enciphering and deciphering messages-to maintain the privacy of computer data. It describes dozens of cryptography algorithms, gives practical advice on how to implement them into cryptographic software, and shows how they can be used to solve security problems. Covering the latest developments in practical cryptographic techniques, this new edition shows programmers who design computer applications, networks, and storage systems how they can build security into their software and systems. What's new in the Second Edition? * New information on the Clipper Chip, including ways to defeat the key escrow mechanism * New encryption algorithms, including algorithms from the former Soviet Union and South Africa, and the RC4 stream cipher * The latest protocols for digital signatures, authentication, secure elections, digital cash, and more * More detailed information on key management and cryptographic implementations
Kafka: The Definitive Guide: Real-Time Data and Stream Processing at Scale
Neha Narkhede - 2017
And how to move all of this data becomes nearly as important as the data itself. If you� re an application architect, developer, or production engineer new to Apache Kafka, this practical guide shows you how to use this open source streaming platform to handle real-time data feeds.Engineers from Confluent and LinkedIn who are responsible for developing Kafka explain how to deploy production Kafka clusters, write reliable event-driven microservices, and build scalable stream-processing applications with this platform. Through detailed examples, you� ll learn Kafka� s design principles, reliability guarantees, key APIs, and architecture details, including the replication protocol, the controller, and the storage layer.Understand publish-subscribe messaging and how it fits in the big data ecosystem.Explore Kafka producers and consumers for writing and reading messagesUnderstand Kafka patterns and use-case requirements to ensure reliable data deliveryGet best practices for building data pipelines and applications with KafkaManage Kafka in production, and learn to perform monitoring, tuning, and maintenance tasksLearn the most critical metrics among Kafka� s operational measurementsExplore how Kafka� s stream delivery capabilities make it a perfect source for stream processing systems
Bitcoin and Cryptocurrency Technologies: A Comprehensive Introduction
Arvind Narayanan - 2016
Whether you are a student, software developer, tech entrepreneur, or researcher in computer science, this authoritative and self-contained book tells you everything you need to know about the new global money for the Internet age.How do Bitcoin and its block chain actually work? How secure are your bitcoins? How anonymous are their users? Can cryptocurrencies be regulated? These are some of the many questions this book answers. It begins by tracing the history and development of Bitcoin and cryptocurrencies, and then gives the conceptual and practical foundations you need to engineer secure software that interacts with the Bitcoin network as well as to integrate ideas from Bitcoin into your own projects. Topics include decentralization, mining, the politics of Bitcoin, altcoins and the cryptocurrency ecosystem, the future of Bitcoin, and more.An essential introduction to the new technologies of digital currencyCovers the history and mechanics of Bitcoin and the block chain, security, decentralization, anonymity, politics and regulation, altcoins, and much moreFeatures an accompanying website that includes instructional videos for each chapter, homework problems, programming assignments, and lecture slidesAlso suitable for use with the authors' Coursera online courseElectronic solutions manual (available only to professors)
The Art of Computer Programming, Volume 2: Seminumerical Algorithms
Donald Ervin Knuth - 1969
-Byte, September 1995 I can't begin to tell you how many pleasurable hours of study and recreation they have afforded me! I have pored over them in cars, restaurants, at work, at home... and even at a Little League game when my son wasn't in the line-up. -Charles Long If you think you're a really good programmer... read [Knuth's] Art of Computer Programming... You should definitely send me a resume if you can read the whole thing. -Bill Gates It's always a pleasure when a problem is hard enough that you have to get the Knuths off the shelf. I find that merely opening one has a very useful terrorizing effect on computers. -Jonathan Laventhol The second volume offers a complete introduction to the field of seminumerical algorithms, with separate chapters on random numbers and arithmetic. The book summarizes the major paradigms and basic theory of such algorithms, thereby providing a comprehensive interface between computer programming and numerical analysis. Particularly noteworthy in this third edition is Knuth's new treatment of random number generators, and his discussion of calculations with formal power series. Ebook (PDF version) produced by Mathematical Sciences Publishers (MSP), http: //msp.org
Hadoop: The Definitive Guide
Tom White - 2009
Ideal for processing large datasets, the Apache Hadoop framework is an open source implementation of the MapReduce algorithm on which Google built its empire. This comprehensive resource demonstrates how to use Hadoop to build reliable, scalable, distributed systems: programmers will find details for analyzing large datasets, and administrators will learn how to set up and run Hadoop clusters. Complete with case studies that illustrate how Hadoop solves specific problems, this book helps you:Use the Hadoop Distributed File System (HDFS) for storing large datasets, and run distributed computations over those datasets using MapReduce Become familiar with Hadoop's data and I/O building blocks for compression, data integrity, serialization, and persistence Discover common pitfalls and advanced features for writing real-world MapReduce programs Design, build, and administer a dedicated Hadoop cluster, or run Hadoop in the cloud Use Pig, a high-level query language for large-scale data processing Take advantage of HBase, Hadoop's database for structured and semi-structured data Learn ZooKeeper, a toolkit of coordination primitives for building distributed systems If you have lots of data -- whether it's gigabytes or petabytes -- Hadoop is the perfect solution. Hadoop: The Definitive Guide is the most thorough book available on the subject. "Now you have the opportunity to learn about Hadoop from a master-not only of the technology, but also of common sense and plain talk." -- Doug Cutting, Hadoop Founder, Yahoo!
Programming in Scala
Martin Odersky - 2008
Coauthored by the designer of the Scala language, this authoritative book will teach you, one step at a time, the Scala language and the ideas behind it. The book is carefully crafted to help you learn. The first few chapters will give you enough of the basics that you can already start using Scala for simple tasks. The entire book is organized so that each new concept builds on concepts that came before - a series of steps that promises to help you master the Scala language and the important ideas about programming that Scala embodies. A comprehensive tutorial and reference for Scala, this book covers the entire language and important libraries.
Data Analysis with Open Source Tools: A Hands-On Guide for Programmers and Data Scientists
Philipp K. Janert - 2010
With this insightful book, intermediate to experienced programmers interested in data analysis will learn techniques for working with data in a business environment. You'll learn how to look at data to discover what it contains, how to capture those ideas in conceptual models, and then feed your understanding back into the organization through business plans, metrics dashboards, and other applications.Along the way, you'll experiment with concepts through hands-on workshops at the end of each chapter. Above all, you'll learn how to think about the results you want to achieve -- rather than rely on tools to think for you.Use graphics to describe data with one, two, or dozens of variablesDevelop conceptual models using back-of-the-envelope calculations, as well asscaling and probability argumentsMine data with computationally intensive methods such as simulation and clusteringMake your conclusions understandable through reports, dashboards, and other metrics programsUnderstand financial calculations, including the time-value of moneyUse dimensionality reduction techniques or predictive analytics to conquer challenging data analysis situationsBecome familiar with different open source programming environments for data analysisFinally, a concise reference for understanding how to conquer piles of data.--Austin King, Senior Web Developer, MozillaAn indispensable text for aspiring data scientists.--Michael E. Driscoll, CEO/Founder, Dataspora
Practical Statistics for Data Scientists: 50 Essential Concepts
Peter Bruce - 2017
Courses and books on basic statistics rarely cover the topic from a data science perspective. This practical guide explains how to apply various statistical methods to data science, tells you how to avoid their misuse, and gives you advice on what's important and what's not.Many data science resources incorporate statistical methods but lack a deeper statistical perspective. If you're familiar with the R programming language, and have some exposure to statistics, this quick reference bridges the gap in an accessible, readable format.With this book, you'll learn:Why exploratory data analysis is a key preliminary step in data scienceHow random sampling can reduce bias and yield a higher quality dataset, even with big dataHow the principles of experimental design yield definitive answers to questionsHow to use regression to estimate outcomes and detect anomaliesKey classification techniques for predicting which categories a record belongs toStatistical machine learning methods that "learn" from dataUnsupervised learning methods for extracting meaning from unlabeled data