Rebooting AI: Building Artificial Intelligence We Can Trust


Gary F. Marcus - 2019
    Professors Gary Marcus and Ernest Davis have spent their careers at the forefront of AI research and have witnessed some of the greatest milestones in the field, but they argue that a computer winning in games like Jeopardy and go does not signal that we are on the doorstep of fully autonomous cars or superintelligent machines. The achievements in the field thus far have occurred in closed systems with fixed sets of rules. These approaches are too narrow to achieve genuine intelligence. The world we live in is wildly complex and open-ended. How can we bridge this gap? What will the consequences be when we do? Marcus and Davis show us what we need to first accomplish before we get there and argue that if we are wise along the way, we won't need to worry about a future of machine overlords. If we heed their advice, humanity can create an AI that we can trust in our homes, our cars, and our doctor's offices. Reboot provides a lucid, clear-eyed assessment of the current science and offers an inspiring vision of what we can achieve and how AI can make our lives better.

Bitcoin and Cryptocurrency Technologies: A Comprehensive Introduction


Arvind Narayanan - 2016
    Whether you are a student, software developer, tech entrepreneur, or researcher in computer science, this authoritative and self-contained book tells you everything you need to know about the new global money for the Internet age.How do Bitcoin and its block chain actually work? How secure are your bitcoins? How anonymous are their users? Can cryptocurrencies be regulated? These are some of the many questions this book answers. It begins by tracing the history and development of Bitcoin and cryptocurrencies, and then gives the conceptual and practical foundations you need to engineer secure software that interacts with the Bitcoin network as well as to integrate ideas from Bitcoin into your own projects. Topics include decentralization, mining, the politics of Bitcoin, altcoins and the cryptocurrency ecosystem, the future of Bitcoin, and more.An essential introduction to the new technologies of digital currencyCovers the history and mechanics of Bitcoin and the block chain, security, decentralization, anonymity, politics and regulation, altcoins, and much moreFeatures an accompanying website that includes instructional videos for each chapter, homework problems, programming assignments, and lecture slidesAlso suitable for use with the authors' Coursera online courseElectronic solutions manual (available only to professors)

The Basics of Bitcoins and Blockchains: An Introduction to Cryptocurrencies and the Technology that Powers Them


Antony Lewis - 2018
    But, for the uninitiated, most of this information can be indecipherable. The Basics of Bitcoins and Blockchains aims to provide an accessible guide to this new currency and the revolutionary technology that powers it.Bitcoin, Ethereum, and other cryptocurrencies: Gain an understanding of a broad spectrum of Bitcoin topics. The Basics of Bitcoins and Blockchains covers topics such as the history of Bitcoin, the Bitcoin blockchain, and Bitcoin buying, selling, and mining. It also answers how payments are made and how transactions are kept secure. Other cryptocurrencies and cryptocurrency pricing are examined, answering how one puts a value on cryptocurrencies and digital tokens.Blockchain technology: Blockchain technology underlies all cryptocurrencies and cryptocurrency transactions. But what exactly is a blockchain, how does it work, and why is it important? The Basics of Bitcoins and Blockchains will answer these questions and more. Learn about notable blockchain platforms, smart contracts, and other important facets of blockchains and their function in the changing cyber-economy.Things to know before buying cryptocurrencies: The Basics of Bitcoins and Blockchains offers trustworthy and balanced insights to those interested in Bitcoin investing or investing in other cryptocurrency. Discover the risks and mitigations, learn how to identify scams, and understand cryptocurrency exchanges, digital wallets, and regulations with this book.Readers will learn about: Bitcoin and other cryptocurrencies Blockchain technology and how it works The workings of the cryptocurrency market The evolution and potential impacts of Bitcoin and blockchains on global businesses Dive into the world of cryptocurrency with confidence with this comprehensive introduction.

Bayesian Data Analysis


Andrew Gelman - 1995
    Its world-class authors provide guidance on all aspects of Bayesian data analysis and include examples of real statistical analyses, based on their own research, that demonstrate how to solve complicated problems. Changes in the new edition include:Stronger focus on MCMC Revision of the computational advice in Part III New chapters on nonlinear models and decision analysis Several additional applied examples from the authors' recent research Additional chapters on current models for Bayesian data analysis such as nonlinear models, generalized linear mixed models, and more Reorganization of chapters 6 and 7 on model checking and data collectionBayesian computation is currently at a stage where there are many reasonable ways to compute any given posterior distribution. However, the best approach is not always clear ahead of time. Reflecting this, the new edition offers a more pluralistic presentation, giving advice on performing computations from many perspectives while making clear the importance of being aware that there are different ways to implement any given iterative simulation computation. The new approach, additional examples, and updated information make Bayesian Data Analysis an excellent introductory text and a reference that working scientists will use throughout their professional life.

Introduction to Machine Learning


Ethem Alpaydin - 2004
    Many successful applications of machine learning exist already, including systems that analyze past sales data to predict customer behavior, recognize faces or spoken speech, optimize robot behavior so that a task can be completed using minimum resources, and extract knowledge from bioinformatics data. "Introduction to Machine Learning" is a comprehensive textbook on the subject, covering a broad array of topics not usually included in introductory machine learning texts. It discusses many methods based in different fields, including statistics, pattern recognition, neural networks, artificial intelligence, signal processing, control, and data mining, in order to present a unified treatment of machine learning problems and solutions. All learning algorithms are explained so that the student can easily move from the equations in the book to a computer program. The book can be used by advanced undergraduates and graduate students who have completed courses in computer programming, probability, calculus, and linear algebra. It will also be of interest to engineers in the field who are concerned with the application of machine learning methods.After an introduction that defines machine learning and gives examples of machine learning applications, the book covers supervised learning, Bayesian decision theory, parametric methods, multivariate methods, dimensionality reduction, clustering, nonparametric methods, decision trees, linear discrimination, multilayer perceptrons, local models, hidden Markov models, assessing and comparing classification algorithms, combining multiple learners, and reinforcement learning.

Cryptoassets: The Innovative Investor's Guide to Bitcoin and Beyond


Chris Burniske - 2017
    Bitcoin was the first cryptoasset, but today there are over 800 and counting, including ether, ripple, litecoin, monero, and more. This clear, concise, and accessible guide from two industry insiders shows you how to navigate this brave new blockchain world—and how to invest in these emerging assets to secure your financial future. Cryptoassets gives you all the tools you need: * An actionable framework for investigating and valuing cryptoassets * Portfolio management techniques to maximize returns while managing risk * Historical context and tips to navigate inevitable bubbles and manias * Practical guides to exchanges, wallets, capital market vehicles, and ICOs * Predictions on how blockchain technology may disrupt current portfolios In addition to offering smart investment strategies, this authoritative resource will help you understand how these assets were created, how they work, and how they are evolving amid the blockchain revolution. The authors define a clear and original cryptoasset taxonomy, composed of cryptocurrencies, cryptocommodities, and cryptotokens, with insights into how each subset is blending technology and markets. You’ll find a variety of methods to invest in these assets, whether through global exchanges trading 24/7 or initial cryptoasset offerings (ICOs). By sequentially building on the concepts of each prior chapter, the book will provide you with a full understanding of the cryptoasset economy and the opportunities that await the innovative investor . Cryptoassets represent the future of money and markets. This book is your guide to that future.

Numsense! Data Science for the Layman: No Math Added


Annalyn Ng - 2017
    Sold in over 85 countries and translated into more than 5 languages.---------------Want to get started on data science?Our promise: no math added.This book has been written in layman's terms as a gentle introduction to data science and its algorithms. Each algorithm has its own dedicated chapter that explains how it works, and shows an example of a real-world application. To help you grasp key concepts, we stick to intuitive explanations and visuals.Popular concepts covered include:- A/B Testing- Anomaly Detection- Association Rules- Clustering- Decision Trees and Random Forests- Regression Analysis- Social Network Analysis- Neural NetworksFeatures:- Intuitive explanations and visuals- Real-world applications to illustrate each algorithm- Point summaries at the end of each chapter- Reference sheets comparing the pros and cons of algorithms- Glossary list of commonly-used termsWith this book, we hope to give you a practical understanding of data science, so that you, too, can leverage its strengths in making better decisions.

The Annotated Turing: A Guided Tour Through Alan Turing's Historic Paper on Computability and the Turing Machine


Charles Petzold - 2008
    Turing Mathematician Alan Turing invented an imaginary computer known as the Turing Machine; in an age before computers, he explored the concept of what it meant to be "computable," creating the field of computability theory in the process, a foundation of present-day computer programming.The book expands Turing's original 36-page paper with additional background chapters and extensive annotations; the author elaborates on and clarifies many of Turing's statements, making the original difficult-to-read document accessible to present day programmers, computer science majors, math geeks, and others.Interwoven into the narrative are the highlights of Turing's own life: his years at Cambridge and Princeton, his secret work in cryptanalysis during World War II, his involvement in seminal computer projects, his speculations about artificial intelligence, his arrest and prosecution for the crime of "gross indecency," and his early death by apparent suicide at the age of 41.

Machine Learning


Tom M. Mitchell - 1986
    Mitchell covers the field of machine learning, the study of algorithms that allow computer programs to automatically improve through experience and that automatically infer general laws from specific data.

Machine Learning: A Visual Starter Course For Beginner's


Oliver Theobald - 2017
     If you have ever found yourself lost halfway through other introductory materials on this topic, this is the book for you. If you don't understand set terminology such as vectors, hyperplanes, and centroids, then this is also the book for you. This starter course isn't a picture story book but does include many visual examples that break algorithms down into a digestible and practical format. As a starter course, this book connects the dots and offers the crash course I wish I had when I first started. The kind of guide I wish had before I started taking on introductory courses that presume you’re two days away from an advanced mathematics exam. That’s why this introductory course doesn’t go further on the subject than other introductory books, but rather, goes a step back. A half-step back in order to help everyone make his or her first strides in machine learning and is an ideal study companion for the visual learner. In this step-by-step guide you will learn: - How to download free datasets - What tools and software packages you need - Data scrubbing techniques, including one-hot encoding, binning and dealing with missing data - Preparing data for analysis, including k-fold Validation - Regression analysis to create trend lines - Clustering, including k-means and k-nearest Neighbors - Naive Bayes Classifier to predict new classes - Anomaly detection and SVM algorithms to combat anomalies and outliers - The basics of Neural Networks - Bias/Variance to improve your machine learning model - Decision Trees to decode classification Please feel welcome to join this starter course by buying a copy, or sending a free sample to your preferred device.

Swing Into It: A Simple System For Trading Pullbacks to the 50-Day Moving Average


T. Livingston - 2018
    Detailing the technical indicators and money management strategies that have worked best for him, T. Livingston breaks down what every savvy trader needs to profit in today’s stock market. Topics discussed include how to analyze the general market, which stocks to trade, when to buy, position sizing, profit targets, and selling rules. Swing Into It provides a variety of different examples so that the reader will be prepared for various market scenarios. Detailed sample trades are included so that the reader can see how Livingston thinks throughout each phase of his trades. If you’re looking to get started in swing trading or seeking to refine your trading system, Swing Into It belongs in your library.

Learn Python The Hard Way


Zed A. Shaw - 2010
    The title says it is the hard way to learn to writecode but it’s actually not. It’s the “hard” way only in that it’s the way people used to teach things. In this book youwill do something incredibly simple that all programmers actually do to learn a language: 1. Go through each exercise. 2. Type in each sample exactly. 3. Make it run.That’s it. This will be very difficult at first, but stick with it. If you go through this book, and do each exercise for1-2 hours a night, then you’ll have a good foundation for moving on to another book. You might not really learn“programming” from this book, but you will learn the foundation skills you need to start learning the language.This book’s job is to teach you the three most basic essential skills that a beginning programmer needs to know:Reading And Writing, Attention To Detail, Spotting Differences.

A Random Walk Down Wall Street: The Time-Tested Strategy for Successful Investing


Burton G. Malkiel - 1973
    At a time of frightening volatility, what is the average investor to do?The answer: turn to Burton G. Malkiel’s advice in his reassuring, authoritative, gimmick-free, and perennially best-selling guide to investing. Long established as the first book to purchase before starting a portfolio or 401(k), A Random Walk Down Wall Street now features new material on “tax-loss harvesting,” the crown jewel of tax management; the current bitcoin bubble; and automated investment advisers; as well as a brand-new chapter on factor investing and risk parity. And as always, Malkiel’s core insights—on stocks and bonds, as well as real estate investment trusts, home ownership, and tangible assets like gold and collectibles— along with the book’s classic life-cycle guide to investing, will help restore confidence and composure to anyone seeking a calm route through today’s financial markets.

Deep Medicine: How Artificial Intelligence Can Make Healthcare Human Again


Eric J. Topol - 2019
    The doctor-patient relationship--the heart of medicine--is broken: doctors are too distracted and overwhelmed to truly connect with their patients, and medical errors and misdiagnoses abound. In Deep Medicine, leading physician Eric Topol reveals how artificial intelligence can help. AI has the potential to transform everything doctors do, from notetaking and medical scans to diagnosis and treatment, greatly cutting down the cost of medicine and reducing human mortality. By freeing physicians from the tasks that interfere with human connection, AI will create space for the real healing that takes place between a doctor who can listen and a patient who needs to be heard.Innovative, provocative, and hopeful, Deep Medicine shows us how the awesome power of AI can make medicine better, for all the humans involved.

Head First Design Patterns


Eric Freeman - 2004
     At any given moment, somewhere in the world someone struggles with the same software design problems you have. You know you don't want to reinvent the wheel (or worse, a flat tire), so you look to Design Patterns--the lessons learned by those who've faced the same problems. With Design Patterns, you get to take advantage of the best practices and experience of others, so that you can spend your time on...something else. Something more challenging. Something more complex. Something more fun. You want to learn about the patterns that matter--why to use them, when to use them, how to use them (and when NOT to use them). But you don't just want to see how patterns look in a book, you want to know how they look "in the wild". In their native environment. In other words, in real world applications. You also want to learn how patterns are used in the Java API, and how to exploit Java's built-in pattern support in your own code. You want to learn the real OO design principles and why everything your boss told you about inheritance might be wrong (and what to do instead). You want to learn how those principles will help the next time you're up a creek without a design pattern. Most importantly, you want to learn the "secret language" of Design Patterns so that you can hold your own with your co-worker (and impress cocktail party guests) when he casually mentions his stunningly clever use of Command, Facade, Proxy, and Factory in between sips of a martini. You'll easily counter with your deep understanding of why Singleton isn't as simple as it sounds, how the Factory is so often misunderstood, or on the real relationship between Decorator, Facade and Adapter. With Head First Design Patterns, you'll avoid the embarrassment of thinking Decorator is something from the "Trading Spaces" show. Best of all, in a way that won't put you to sleep! We think your time is too important (and too short) to spend it struggling with academic texts. If you've read a Head First book, you know what to expect--a visually rich format designed for the way your brain works. Using the latest research in neurobiology, cognitive science, and learning theory, Head First Design Patterns will load patterns into your brain in a way that sticks. In a way that lets you put them to work immediately. In a way that makes you better at solving software design problems, and better at speaking the language of patterns with others on your team.